.....(last live f p.4).... Thus V(,F) is a functor — cf. § 4 of [6] --- by means of which we are "visualizing" the category of incidences of the simplicial complex Δ.

One can play the zeta game with other algebraic geometric visualizations of Δ also. For example one has the **affine variety** covering V(Δ ,F), i.e. the set $\hat{V}(\Delta$,F) of points of Fⁿ \ (0) whose support belongs to Δ ; so V(Δ ,F) is the quotient of $\hat{V}(\Delta$,F) under the action of the multiplicative subgroup F[×] of the field F. The definition and computation of the zeta function of \hat{V} is analogous to that of V.

Theorem (2.2).
$$\hat{Z}_{\Delta}(t) = \prod_{j=1}^{d+1} \frac{1}{(1 - q^j t)^{\hat{F}_{j-1}}}$$
, where

(1)
$$\hat{F}_{j-1} = F_{j-1} - F_j = \sum_{i=j-1}^{d} (-1)^{i+1-j} \cdot {i+1 \choose j} \cdot f_i$$
, and so

$$(\hat{2}) \qquad \qquad f_{j} = \sum_{i=j-1}^{d} \begin{pmatrix} i+1 \\ j \end{pmatrix} \hat{F}_{i}.$$

This time the singular homology of the variety over \mathbb{C} is given by the following (where $\sigma = \phi$ is allowed and reduced homology is used).

Theorem (2.3).
$$\widetilde{H}_{i}(\widehat{\vee}(\Delta,\mathbb{C});\mathbb{Z}) \cong \bigoplus_{\sigma \in \Delta} \widetilde{H}_{i-\mathbb{Z}[\sigma]}(lk_{\Delta}(\sigma);\mathbb{Z}).$$

In fact $\hat{\mathbb{V}}(\Delta, \mathbb{C})$, or equivalently its intersection $\operatorname{Sph}_{\mathbb{C}}(\Delta)^*$ with the unit sphere of \mathbb{C}^n , has the homotopy type of the bouquet $\mathbb{V}_{\sigma \in \Delta} (lk_{\Delta}(\sigma)) \cdot S^{2|\sigma|-1}$: cf. Ziegler-Zivaljevic's [11] who prove the analogous formula $\overline{H}_{i}(\hat{\mathbb{V}}(\Delta, \mathbb{R}); \mathbb{Z}) \cong \oplus_{\sigma \in \Delta} \overline{H}_{i-|\sigma|}(lk_{\Delta}(\sigma); \mathbb{Z})$ for the variety over \mathbb{R} .

Lemma (2.1). $\hat{\mathsf{F}}_{j-1} = \sum_{|\sigma|=j} \overline{u}(lk_{\Delta}(\sigma))$.

The above formula (where reduced Euler characteristics of links are used) follows easily from $(\hat{1})$ and gives an analogous connection between the zeta function of \hat{V} and its singular homology.

Following [6] it is useful also to think of $\operatorname{Sph}_{\mathbb{C}}(\Delta) \simeq \widehat{\mathbb{V}}(\Delta,\mathbb{C})$ as a small deleted join of Δ with respect to the group $G = S^1 \simeq \mathbb{C}^{\times}$. For example see [7] which gives an interesting geometric application of the Chern class of the circle bundle $\operatorname{Sph}_{\mathbb{C}}(\Delta) \longrightarrow \operatorname{Proj}_{\mathbb{C}}(\Delta)$ (= $\mathbb{V}(\Delta,\mathbb{C})$); see also (3.9) below. By using higher linear groups $\operatorname{GL}(\mathsf{m},\mathsf{F})$ one can also consider zetas of other affine and projective visualizations of Δ .

10

As was observed in [1], and later independently in [6], the formula $\overline{H}_{i}(\widehat{V}(\Delta,\mathbb{R});\mathbb{Z}) \cong \bigoplus_{\sigma \in \Delta} \overline{H}_{i-|\sigma|}(lk_{\Delta}(\sigma);\mathbb{Z})$ has the striking corollary that Δ is Cohen-Macaulay of dimension d iff the homology of $\widehat{V}(\Delta,\mathbb{R})$ is trivial in dimensions less than d. There is an analogous result for the complexification $\widehat{V}(\Delta,\mathbb{C})$ of the real variety $\widehat{V}(\Delta,\mathbb{R})$.

Theorem (3.9). Δ is Cohen-Macaulay of dimension d iff dim $(\overline{H}_{i}(\widehat{\mathbb{V}}(\Delta,\mathbb{C});\mathbb{C}))$ = $(-1)^{i+1} \cdot \widehat{F}_{i-d-1}$ for all i (so it is zero in dimensions i < d).

Proof. If Δ is Cohen-Macaulay (2.3) gives $\dim(\widehat{H}_{i}(\widehat{\vee}(\Delta,\mathbb{C});\mathbb{C})) = \Sigma_{|\sigma| \ge i-d}$ $\overline{\beta}_{i-2|\sigma|}(\mathcal{U}_{\Delta}^{\sigma}) = \Sigma_{|\sigma|=i-d} \overline{\beta}_{2d-i}(\mathcal{U}_{\Delta}^{\sigma}) = \Sigma_{|\sigma|=i-d}(-1)^{i+1} \cdot \overline{\pi}(\mathcal{U}_{\Delta}^{\sigma}) = (-1)^{i+1} \cdot \widehat{F}_{i-d-1}$

Conversely, we'll check by induction that for all σ with $|\sigma| \geq i-d$ one has $\overline{\beta}_{j}(lk_{\Delta}\sigma) = 0$ for $j < i-2|\sigma|$. This suffices because for $|\sigma| \cong i-d$ it reads $\overline{\beta}_{j}(lk_{\Delta}\sigma) = 0$ for $j < d-|\sigma|$. Thus the same calculation as above again gives $\sum_{|\sigma|=i-d} \overline{\beta}_{2d-i}(lk_{\Delta}\sigma) = (-1)^{i+1} \cdot \widehat{F}_{i-d-1}$. So $\dim(\overline{H}_{i}(\widehat{V}(\Delta,\mathbb{C});\mathbb{C})) \leq (-1)^{i+1} \cdot \widehat{F}_{i-d-1}$ (or a fortiori the given equality) implies that we must have $\overline{\beta}_{i-2|\sigma|}(lk_{\Delta}\sigma) = 0$ for all σ with $|\sigma| \geq i-d$. Thus for all σ with $|\sigma| \geq i-d$.

Similar characterizations of Cohen-Macaulayness can be made using small deleted joins over any given non-trivial group G (rather than just G = $\mathbb{R}^{\times} \simeq \mathbb{Z}/2$ or $\mathbb{C}^{\times} \simeq S^{1}$). To end this section we turn now to a characterization of Cohen-Macaulayness via the quotient variety.

Theorem (3.9). \triangle is Cohen-Macaulay of dimension d iff the Betti numbers of $\forall(\triangle, \mathbb{C})$ are as given in (3.3) and (3.4).

Proof. To check sufficiency we will use the Gysin exact sequence of the circle bundle $\hat{V} \simeq \operatorname{Sph}_{\mathbb{C}}(\Delta) \longrightarrow \operatorname{Proj}_{\mathbb{C}}(\Delta) = V$ which runs

$$\rightarrow \operatorname{H}^{i-2}(\vee) \rightarrow \operatorname{H}^{i}(\vee) \rightarrow \operatorname{H}^{i}(\widehat{\vee}) \rightarrow \operatorname{H}^{i-1}(\vee) \rightarrow$$

Here $H^{i-2}(V) \to H^{i}(V)$ denotes cup product with the Chern class of the circle bundle. For $V = \mathbb{CP}^{d}$, and so for any d-dimensional Δ , this map is nonzero for all even $2 \leq i \leq 2d$. So we must have $\dim(\overline{H}_{i}(\widehat{V}(\Delta,\mathbb{C});\mathbb{C})) \leq \beta_{i-1}^{\mathbb{C}} + \beta_{i}^{\mathbb{C}} - 1 = (-1)^{i+1}(F_{i-d-1} - F_{i-d}) = (-1)^{i+1}\cdot\widehat{F}_{i-d-1}$. So as in proof of (3.9) one has equality and Δ is Cohen-Macaulay. q.e.d.

Thus for a Cohen-Macaulay Δ the above maps $H^{i-2}(V) \rightarrow H^{i}(V)$ behave exactly like for \mathbb{CP}^{d} : they are zero for i odd and have rank 1 for all even $2 \leq i \leq 2d$. We remark that (3.9) is of interest for f-vector theory because the second author has checked that the numbers $\beta_{i}^{\mathbb{C}}$ are preserved under Kalai's algebraic shifting.

(after end of E4 on p.8)

(4.3) The usual functional equation between the values at t and t⁻¹ rarely holds for the zeta function $7_{\Delta}(q,t)$ of the singular varieties V(Δ ,F). However there is often a "functional equation" of sorts between its values at q and 1-q. For example for any simplicial manifold Δ with zero Euler characteristic one has

(9)
$$(\hat{Z}_{\Delta})'(q,\emptyset) = (-1)^{d+1} (\hat{Z}_{\Delta})'(1-q,\emptyset),$$

where $(\hat{Z}_{\Delta})'(q,t)$ denotes the derivative of $\hat{Z}_{\Delta}(q,t)$ with respect to t. Indeed using (2.2) we get $\hat{Z}_{\Delta}(q,t) = 1 + \hat{F}(q) \cdot t + o(t^2)$ where $\hat{F}(z) = \hat{F}_{0}z$ $+ \hat{F}_{1} \cdot z^2 + \hat{F}_{2} \cdot z^3 + \dots$, and by $(\hat{Z}) - \hat{F}(1-z) = f(z)$, where $f(z) = f_{0}z - f_{1} \cdot z + f_{2} \cdot z^2 - \dots$. So (9) is equivalent to $f(1-q) = (-1)^{d+1} \cdot f(q)$, i.e. the Dehn-Sommerville equations (8). See also [5] for remarks regarding the corresponding "Riemann hypothesis".

References contd.

[1] A. Björner, Subspace arrangements, in, Proc. Eur. Cong. Math. Paris 1992, pp. 321-370, Birkhaüser (1994).

[5] K. S. Sarkaria, A "Riemann Hypothesis" for triangulable manifolds, Proc. Amer. Math. Soc. 90 (1984) 325-326.

[6] —, Some simplicial (co)homologies, Lectures given in Chandigarh Cyclic (Co)homology Workshop = I.H.E.S. preprint (1995).

[7] ---- , Sierksma's Dutch Cheese Problem, to appear.