(last line of p.4)... Thus V , F) is a functor - cf. \& 4 of [6] - by means of which we are "visualizing" the eategory of incidences of the simplicial complex Δ.

One can play the zeta game with other algebraic geometric visualizations of Δ also. For example one has the affine variety covering $V(\Delta, F)$, i.e. the set $\hat{V}(\Delta, F)$ of points of F^{n} ($D 3$ whose support belongs to $\Delta ; 50 \dot{V}(\Delta, F)$ is the quotient of $\dot{V}(\Delta, F)$ under the action of the multiplicative subgroup F^{x} of the field F. The definition and computation of the zeta function of $\hat{v} i s$ analogous to that of v.

Theorem $\left(\widehat{2.2)} \hat{Z}_{\Delta}(t)=\prod_{j=1}^{d+1}\right.$

$$
\left(1-q^{j} t\right)^{F-1}
$$

$$
\hat{F}_{j-1}=F_{j-1}-F_{j}=\Sigma_{i=j-1}^{d}(-1)^{i+1-j} \cdot\left[\begin{array}{c}
i+1 \tag{1}\\
j
\end{array}\right] \cdot f_{i} \text {, and so }
$$

(2)

$$
f_{j}=\Sigma_{i=j-1}^{d}\binom{i+1}{j} \widehat{F}_{i}
$$

This time the singular homology of the variety over $\mathbb{C} i s$ given by the following (where $\alpha=\phi$ is allowed and reduced homology is used).

Theorem $\left.(\hat{2} .3) . \bar{H}_{i}(\hat{v}(\Delta, \mathbb{C}) ; \mathbb{Z}) \cong \oplus_{\nu \in \Delta} \bar{H}_{i-2|\sigma|^{(l k} \Delta}(\alpha) ; \mathbb{Z}\right)$.

In fact $\hat{V}(\Delta, \mathbb{C})$, or equivalently its intersection $\operatorname{Sph}_{\mathbb{C}}(\Delta)$ with the unit sphere of \mathbb{C}^{n}, has the homotopy type of the bouquet $V_{d \in \Delta}\left(2 k_{\Delta}(0)\right) . s^{2|\alpha|-1}$: cf. Ziegler-Zivaljevie's [11] who prove the analogous formula $\left.\vec{H}_{i}(\hat{v}(\Delta, \mathbb{R}) ; \mathbb{Z}) \cong \oplus_{c \in \Delta} \bar{H}_{i-|v|^{(l k} \Delta}(0) ; \mathbb{Z}\right)$ for the variety over \mathbb{R}.

Lemma (2.1). $\hat{F}_{j-1}=\Sigma_{|\sigma|=j} \bar{x}(l k \Delta(\sigma))$.

The above formula (where reduced Euler characteristics of links are used) follows easily from ($\hat{1}$) and gives an analogous connection between the zeta function of \hat{v} and its singular homology.

Following [6] it is useful also to think of $\mathrm{Sph}_{\mathbb{C}}(\Delta) \simeq \widehat{v}(\Delta, \mathbb{C})$ as a small deleted join of Δ with respect to the group $G=s^{1} \simeq \mathbb{C}^{\times}$. For example see [7] which gives an interesting geometric application of the Chern class of the circle bundle $\operatorname{Sph}_{\mathbb{C}}(\Delta) \longrightarrow \operatorname{Froj}_{\mathbb{C}}(\Delta)(=V(\Delta, \mathbb{C}))$; see also (3.9) below. By using higher linear groups GL(m,F) one can also consider zetas of other affine and projective visualizations of Δ.

$$
\text { (after and } \gamma \text { \& } 3 \text { an } p .7 \text {) }
$$

As was observed in [1], and later independently in [6], the formula $\left.\bar{H}_{i}(\hat{V}(\Delta, \mathbb{R}) ; \mathbb{Z}) \cong \oplus{ }_{c \in \Delta} \bar{H}_{i-|o|^{(t h} \Delta}(0) ; \mathbb{Z}\right)$ has the striking corollary that Δ is Cohen-Macautay of dimension diff the homology of $\hat{V}(\Delta, \mathbb{R})$ is trivial in dimensions less than d. There is an analogous result for the complexification $\widehat{V}(\Delta, \mathbb{C})$ of the real variety $\dddot{V}(A, \mathbb{F})$.

Theorem (3.9). Δ is Colmen-Maraulay of dimension d iff dim $\left(\bar{H}_{i}(\widehat{V}(\Delta, \mathbb{C})\right.$: $\mathbb{C})$) $=(-1)^{i+1} \cdot \hat{F}_{i-d-1}$ for all i (50 it is zero in dimensions is).

Proof. If Δ is Cohen-Macaulay (2.3) gives dim $\left(\bar{H}_{i}(\hat{V}(\Delta, \mathbb{C}) ; \mathbb{C})\right)=\Sigma|\sigma| \geq i-d$ $\left.\bar{f}_{i-2|\sigma|^{\left(l k_{\Delta}\right.}(\sigma)}=\Sigma_{|\sigma|=i-d} \bar{r}_{2 d-i}\left(l k_{\Delta} \alpha\right)=\sum_{|\sigma|=i-d}(-1)^{i+1} \cdot \bar{x}^{(l k} \Delta \alpha\right)=$ $(-1)^{i+1} \cdot \widehat{F}_{i-d-1}$.

Conversely, we'll check by induction that for all o with \mid o $\mid \geq i-d$ one has $\bar{\beta}_{j}(2 k \Delta)=\emptyset$ for $j<i-2|\sigma|$. This suffices because for $|\sigma| \geqslant i-d$ it reads $\bar{\beta}_{j}\left(l k_{\Delta} \alpha\right)=\emptyset$ for $j<d-|\sigma|$. Thus the same calculation as above again gives $\sum_{|\alpha|=i-d} \bar{\beta}_{2 d-i}\left(1 k_{\Delta} \alpha\right)=(-1)^{i+1} \cdot \widehat{F}_{i-d-1} \quad$ So dim $\left(\bar{H}_{i}(\widehat{V}(\Delta, \mathbb{C}) ; \mathbb{C})\right)$ $\leq(-1)^{i+1} \cdot \hat{F}_{i-d-1}$ (or a fortiori the given equality) implies that we must have $\bar{\beta}_{\left.i-2|\sigma|^{(2 k} \alpha\right)}=\emptyset$ for all o with $|\alpha|>i-d$. Thus for all o with $|\sigma| \geq i+1-d$ we have $\bar{\beta}_{j}(l k, \alpha)=n$ for $j<i+1-2|\sigma|$. q.e.d.
\&゙
Similar characterizations of Cohen-Macaulayness can be made using small deleted joins over any given mon-trivial group G (rather than just $G=$ $\mathbb{R}^{\times} \simeq \mathbb{Z} / 2$ or $\mathbb{C}^{\times} \simeq 5^{\frac{1}{\prime}}$). To end this section we turn now to a characterization of Cohen-Macaulayness via the quotient variety.

Theorem (3.9). Δ is Cohen-Macaulay of dimension d iff the Betti numbers of $V(\Delta, \mathbb{C})$ are as given in (3.3) and (3.4).

Proof. To check sufficiency we will use the Gysin exact sequence of the circle bundle $\widehat{v} \simeq$ Sph $_{\mathbb{C}}(\Delta) \longrightarrow \operatorname{Froj}_{\mathbb{C}}(\Delta)=v$ which runs

$$
\rightarrow H^{i-2}(v) \rightarrow H^{i}(v) \rightarrow H^{i}(\hat{v}) \rightarrow H^{i-1}(v) \rightarrow
$$

Here $H^{i-2}(V) \rightarrow H^{i}(v)$ denotes cup product with the Chern class of the circle bundle. For $V=\mathbb{C P}{ }^{d}$, and so for any d-dimensional Δ, this map is nonzero for all even $2 \leq i \leq 2 d$. So we must have $\operatorname{dim}\left(\bar{H}_{i}(\hat{V}(\Delta, \mathbb{C}) ; \mathbb{C})\right.$) \leq $\beta_{i-1}^{\mathbb{C}}+\beta_{i}^{\mathbb{C}}-1=(-1)^{i+1}\left(F_{i-d-1}-F_{i-d}\right)=(-1)^{i+1} \cdot \widehat{F}_{i-d-1}$. So as in proof of (3.9) one has equality and Δ is Cohen-Macaulay. q.e.d.

Thus for a Cohen-Macaulay Δ the above maps $H^{i-2}(V) \rightarrow H^{i}(V)$ behave exactly like for $\mathbb{C P}^{d}$: they are zero for i odd and have rank 1 for all even $2 \leq i \leq 2 d$. We remark that (3.9) is of interest for f-vector theory because the second author has checked that the numbers $\beta_{i}^{\mathbb{C}}$ are preserved under Kalai's algebraic shifting.
(after end of EC on p.8)
(4.3) The usual functional equation between the values at t and t^{-1} rarely holds for the zeta function ${ }^{7} \Delta(q, t)$ of the singular varieties $V(\Delta, F)$. However there is often a "functional equation" of sorts between its values at q and $1-q$. For example for any simplicial manifold Δ with zero Euler characteristic one has
(9)

$$
\left(\hat{z}_{\Delta}\right) \cdot(q, \nabla)=(-1)^{d+1}\left(\hat{z}_{\Delta}\right) \cdot(1-q, \nabla)
$$

where $\left(\hat{Z}_{\Delta}\right) \cdot(q, t)$ denotes the derivative of $\hat{Z}_{\Delta}(q, t)$ with respect to t. Indeed using (2.2) we get $\hat{z}_{\Delta}(q, t)=1+\hat{F}(q) \cdot t+\sigma\left(t^{2}\right.$, where $\hat{F}(z)=\hat{F}_{\square}$ $+\widehat{F}_{1} \cdot z^{2}+\hat{F}_{2} \cdot z^{3}+\ldots$, and by $(\hat{2})-\hat{F}(1-z)=f(z)$, where $f(z)=f \eta^{z}-$ $f_{1} \cdot z+f_{2^{-}} z^{2} \ldots$. So (q) is Equivalent to $f(1-q)=(-1)^{d+1} \cdot f(q)$, i.e. the Dehn-Sommerville equations (8). See also $[5]$ for remarks regarding the corresponding "Riemann hypothesis".

References contd.
[1] A. Björner, Subspace arrangements, in, Proc. Eur. Cong. Math. Paris 1992, pp. 321-370, Eirkhaiser (1994).
[5] K. S. Sarkaria, A "Riemann Hypothesis" for triangulable manifolds, Proc. Amer. Math. Soc. 90 (1984) 325-326.
[6] -, Some simplicial cooshomologies, Lectures given in Chandigarh Cyclic (Co)homology Workshop = T.H.E.S. preprint (1995).
[7] - Sierksma's Dutch Cheese Problem, to appear.

