
spin, theta, etc.

The results obtained in writing b b & b, though at first sight quite different,
surprisingly circled back in a very natural way to what we had been doing before,
viz., hobson’s choice, garlands, etc., which I had resumed as follows, when my
laptop went hors de combat for some weeks.

− : − : −

Just from the fact that Jordan’s 1870 Traité predates Poincaré’s discovery of
automorphic functions in 1881 it is clear that his method for solving equations
could not have used compact tiles {n, n} with angle sum 2π that we have been
focussing on in the above. Indeed, Jordan’s method of page 380 used only the
non compact—all vertices for the seed case are now on the circle itself on which
the unknown roots are situated—tiles with angle sum zero.

− : − : −

Now it seems better to postpone the above and detail that fun paper first.
Apropos its last line, all double helices below make a 3-sphere :-

That is pairs ±q of right handed helices or directed screws—of slope one on
cylinders of radius one with axes through origin—related by a half turn around a
common axis. Since rotations act transitively and faithfully on all these helices
they make an SO(3) = RP 3 = T 1(S2), so pairs ±q of their ‘square roots’ make
double covers of the unit tangent circles of S2 whose union is S3. Further, the
half turn around the line through origin and the point on a helix at distance
one reverses its direction, so all right handed screws make the base space of the
double covering T 1(S2) → T 1(RP 2).� More explicitly,

− : − : −

Our double helices are antipodal pairs of unit quaternions :- Each such pair
±q ∈ S3 gives by conjugation q′ 7→ qq′q−1 = qq′q exactly once all rotations of
the S2 of unit quaternions with scalar part zero. If ±1 the identity, otherwise
around the axis defined by the vector part of ±q. For example since eiθie−iθ = i
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and eiθje−iθ = j cos 2θ+k sin 2θ the quaternions ±eiθ are the two ‘square roots’
of the rotation which keeps ±i ∈ S2 fixed and rotates the perpendicular great
circle by angle 2θ in direction j to k. Likewise conjugation with ekπ/4 keeps
k fixed and rotates i to j, and conjugation with q = eiαekβ rotates base point
i to any v ∈ S2 having ‘latitude’ and ‘longitude’ (2α, 2β) with respect to ±i
and ±k axes. Then conjugations by ±eiθq will double cover the circle S1

v of all
rotations taking i to v. These unit tangent circles S1

v are the disjoint fibers of the
surjection p of all rotations on S2 defined by p(ρ) = ρ(i), in particular S1

±v are
distinct copies of the great circle perpendicular to ±v. For example conjugating
with j takes i to −i and keeps j fixed, so ±eiθj are the square roots of the
circle’s worth of half turns S1

−i which map i to −i and keep j cos 2θ + k sin 2θ
fixed. Thus unlike rotations in S1

i which restrict to rotations of the equator
between ±i, these half turns restrict to its reflections. Therefore the double
covering disjoint circles S̃1

v into which S3 partitions are the pre-images of the
Hopf map S3 → S2 defined by q 7→ qiq.�

All above is on page 115 of Steenrod’s The Topology of Fibre Bundles (1951)
and reminded me–see PG&R IV, page 5–of his 1969 letter:

− : − : −

Q: On which regions D ⊂ R3 are all vector fields without zeros cross products?
Note cross product v × w is quaternion product vw plus dot product v · w and
vector fields are continuous. A: If and only if H2(D;Z) = 0:-

Orthonormalizing we want regions on which any unit vector field u(x) admits
a pointwise perpendicular unit vector field v(x), then there is a unique third w(x)
normal to both such that u(x) = v(x)× w(x). On S2 the vector field u(x) = x
admits no such v(x) for then we would have a homotopy of its orientation
reversing antipodal map to identity along great semicircles from −x to x through
v(x). In other words p : T 1(S2) → S2 has no section. But, like any fibration p
has the homotopy lifting property: for each homotopy ut into the base there is
another vt into its total space such that pvt = ht. So all open sets D ⊂ R3 from
which all maps into S2 are trivial will do. Also, Alexander duality of 3-sphere
R̂3 says H3(D;Z) = 0 always, so obstruction theory implies degree is a bijection
of all homotopy classes of maps D

u−→ S2 with H2(D;Z). Hence all maps trivial
iff H2(D;Z) = 0 or dually iff R̂3 \D is connected.�

Alas! I’m still looking for a copy of my full solution that I had sent him, but
from his 1969 letters to me it amounted to the above, though I was ignorant or
had only a muddled idea of almost all the italicized words, for example I had
constructed the required covering homotopy from scratch.

− : − : −

Musing on his 1969 letters I saw too a smooth A: If and only if any divergence
free vector field on D is a curl:- H2(D;Z) being the reduced zeroth homology
of R̂3 \D is torsionfree, so it vanishes iff H2(D;R) vanishes, but H∗(D;R) can
be computed as kernels/images of the sequence

0 → F(D)
grad−−−→ V(D)

curl−−→ V(D)
div−−→ F(D) → 0,
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where F(D) and V(D) denote all smooth functions and vector fields on D, and
the indicated R-linear maps are the usual grad(f) = ∇f , curl(v) = ∇× v and
div(v) = ∇ · v. The composition of any two succesive maps is zero, i.e., each
image is a vector subspace of the kernel of the next map, and de Rham’s theorem
tells us that their graded quotient is H∗(D;R).�

− : − : −

Steenrod’s −→
P =

−→
E ×

−→
H had at once reminded me of Poynting’s energy flux

of an electromagnetic field and so Maxwell. Helmholtz and Kelvin too had been
drawn to the finite dimensionality of H∗(D;R)–for the domains they considered,
more generally these Betti numbers are finite if D complements any simplicial
complex K–but of course what these pioneers found fascinating is often entirely
missing from textbooks on fluid mechanics.

− : − : −

The right-handed screws in such texts are mnemonics, a left-hand rule can be
given in each case. Naturally occuring helical braids in all life is a different thing
altogether, and yes, some left-handed DNA is also now known, but it is rare:
we who are left-handed are also molecularly right-handed! True, the backbones
of the two DNA strands go from thick to thin in opposite directions, but the
direction that interests us is that in which genes unzip to reproduce–by synthesis
of the complementary bases on the single strands–two copies, this direction is
necessarily the same for both strands :-

�
This pic is like Figure 11 of Watson’s The Double Helix (1968) but before

synthesis on its exposed strands. Note strands shown now are far from cylinder-
ical, indeed DNA is very flexible and often “Amazing curves!” of incredibly long
sequences of ordered base pairs are packed in tiny cells. However these sequences
being finite this huge set of right-handed screws suggests all right-handed arcs
which has (imho) the same homotopy type T 1(RP 2). A tightly-zippered double
helix equipped with the direction in which it will unzip–this destiny if written
in the sequence must be the opposite direction for the opposite sequence–is then
a point ρ in the homotopy type SO(3), and unzipping double covers it with the
homotopy type S3 of all exposed strands or square roots ±√

ρ.

− : − : −
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See Robin Kimmerer’s Braiding Sweetgrass (2013) for more on the symbiosis
between bamboo man and me. This important book I had received as a lock-
down gift from my daughter Mallika Kaur, whose own recent book The Wheat
Fields Still Whisper (2019) is equally important.

− : − : −

The above homotopy type problem made explicit evokes E = mc2 and more
generally Frenet frames of arcs with Lorentz metrics in PG&R.

− : − : −

Generalized cross is wedge product, usually of covectors; so forms, in above
sequence euclidean metric of space is also involved. Undoubtedly much remains
not yet understood in Hamilton’s 18-part paper On quaternions (1844-50). He
emphasized the (space-like) negativity of quaternion square of nonzero vectors.
Dirac operators and so on have pushed this far but symplectization is much less
understood than complexification.

− : − : −

A coffee cup and a donut are the same to a topologist! This well known joke
is usually attributed to Steenrod. From his only letter of 1970 to me–by then
Princeton was within a round train trip–it seems it was one day of the first week
of June 1970 that I had the honour of being treated by Steenrod to a coffee with
probably a donut! I’m not a hundred percent sure because all was still new, I
did not know what a donut was, but it was he who had ordered something nice
and sweet with coffee for me in a coffee-shop on maybe Nassau Street. I recall
that amongst many things we had talked about that day, he had been interested
in my old effort to construct a meaningful quaternionic analysis, and had been
happy to see my visual proof that π2( ) is abelian: the same braided concretely
in “213, 16A” now above the burbling stony brook.�

− : − : −

If the points s of a convex body Kd ⊂ Rd suffer any continuous displacement
v(s) a point ŝ must stay put or be such that the body is in the half-space of
directions making an obtuse angle with its displacement:- For, if the point s+w(s)
of Kd nearest to s+ v(s) is never s, segments [s+w(s), s] produced show d-ball
Kd homotopy equivalent to (d− 1)-sphere ∂Kd.�

As Milnor (1995) points out this result of Brouwer, applied to a product of
n simplices with v(s) the gradients in these n multidirections of n functions,
gives at once the so-called Nash equilibria ŝ of n-games. But the games of real
interest in economics and other social sciences are in my (and if I read him right,
Milnor’s) opinion, ipso facto, too vague to benefit much from this result. Yes,
some well-defined games, for example Hex, which Milnor also discusses, do have
a beautiful theory. And, far more beautiful and deeper still are the justifiably
celebrated but as such unrelated later results of Nash.

− : − : −
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From Nasar’s A Beautiful Mind (1998) Steenrod was Nash’s sounding board,
informal adviser, and the first to grasp his beautiful result of 1952: any smooth
closed manifold is diffeomorphic to a component of the zero-set of polynomials!
So Nash was likely not one of the ‘mathematicians whose methods of working I
do not understand’ in Steenrod’s 1969 letter.

− : − : −

Right-handed spin. The SO(3) bundle over R3 of right-handed triads of unit
vectors has because π1(R3) = 1 a unique double covering Spin(3) = S3 bundle of
square roots. Their restrictions put orientation with spin on any object P 3 ⊂ R3

and if it is smooth compact and non-hollow induce, using outward normal first
on its surface ∂P 3 = M2 a circle bundle with a two-fold cover: the ‘natural
spin structure dictated by the double helices of life’ in b b & b. But obstruction
theory shows, if an oriented manifold has one, then it has exactly |H1( ;F2)|
spin structures, see Milnor (1963). So if this ‘pretzel’ P 3 has g holes it has 2g

right-handed spins—the others don’t extend to R3—that induce on its oriented
surface M2 a square root of its 22g spin structures.�

− : − : −

In analogy to what we used above if a not necessarily connected manifold has
one it has exactly |H0( ;F2)| orientations; a 2-dimensional example having none
is RP 2, so it is not the boundary of any 3-manifold; but any 2-manifold or its
disjoint union with RP 2 occurs as such a boundary, etc., briefly: the unoriented
2-cobordism group is Z/2. While, the oriented 2-cobordism group is 0 because
surfaces occur as oriented boundaries of pretzels. Likewise, using now oriented
manifolds equipped with a spin, one speaks of spin cobordism, for example, the
spin 2-cobordism group is Z/2 :-

Let M2 be oriented with a non-DNA or nonzero spin α ∈ H1(M2;F2).
Choose a dual 1-cycle, perturb it in any pretzel P 3 bounded by M2 to a simple
closed curve and delete a thin ‘donut’ around it. This hollow object N3 has as
boundary the union of M2 and a torus, so H1(N3;F2) is 2-dimensional. Of its
three nonzero spins one induces α on M2 and a nonzero spin on the torus, and
‘half cup square’ H1(M2;F2)

ϑ−→ F2 is nonzero on α iff this is the unique toral
spin that is not a spin boundary, see Atiyah (1971).�

− : − : −

This quadratic function ϑ was worked out in a manuscript left behind in 1866
by Riemann, and a problem on a par (and possibly tied) with his hypothesis on
the zeta function is : find π∗(S

2). Cobordism arose from it, e.g., π4(S
2) ∼= Z/2

was seen as a framed 2-cobordism group :-
Equip the torus T 2 of unit quaternions v = 1√

2
(eiα+jeiβ) with one of its two

normal vector fields w tangent to S3. The same torus with these normal frames
(v, w) rotated by angles α + β will be T 2. No normally framed 3-manifold
of R4 × [0, 1] has ends T 2 and T 2 : see Pontryagin’s Smooth Manifolds and
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their Applications in Homotopy Theory (1955), in particular pages 110-111.
Surjecting suitably a tubular neighbourhood of the torus on an open ball B2,
and its complement on a point at infinity, gives a continuous map S4 = R̂4 →
B̂2 = S2 having T 2 as the pull-back of a regular value with a pair of orthonormal
vectors; this map is homotopically non-trivial.�

− : − : −

Homotopically the above map is the Hopf fibration composed with its first
suspension. Pontryagin’s method dates back to 1938 when, using as obstruction
to framed 1-cobordism the mod 2 linking due to π1(SOk+2) ∼= Z/2, he had shown
that all its suspensions are non-trivial. So, thanks to πi(S

3) ∼= πi(S
2) for i > 2,

which follows from the Hurewicz exact sequence of this fibration, π4(S
2) ∼= Z/2

was already known. The merit of the above new look at the non-triviality of
this group was by 1950 he had seen what he had missed in 1938, that framed 2-
cobordism is obstructed by Riemann’s characteristic ϑ, which moreover lives on
in suspensions, so all these π4+k(S

2+k) were in fact Z/2, not 0 as he had claimed
in 1938 because he overlooked the all-important term in this theta coming from
the intersection form of the surface.

− : − : −

The baton was passed on to Rokhlin who analyzed π5(S
2) ∼= Z2 and its stem

using framed 3-cobordism in four famous notes of 1951-52. Amusingly like his
mentor he too initially slipped and concluded that a 3-torus T 3, with its obvious
normal framing twisted by the sum of its 3 angles, was stably the boundary of a
certain smooth framed M4, which he made using an L4 with an ‘honest’ 2-sphere
in it homologous to a certain 2-torus. After the fourth note, in which are made
the corrections, it was clear that there are in his L4 only singular 2-spheres of this
kind: Rokhlin’s L4 gives counterexamples to the 2-dimensional Whitney trick.
See Guillou and Marin’s À la Recherche de la Topologie Perdue (1986), especially
pages 5-8 and 38-42. The fourth note outlined why the oriented 3-cobordism
group is zero, while signature of the intersection form is a homomorphism from
the oriented 4-cobordism group to Z. Using these tools he saw in tandem that
the Freudenthal-stable groups π5+k(S

2+k), k ≥ 3 were Z/24, and that, if all
surfaces of a closed smooth oriented 4-manifold have even self-intersection, then
its signature is divisible by 16. See Finashin and Kharlamov (2020) who analyze
this part of Rokhlin’s argument and show it also gives the other unstable groups
of this stem: π6(S

3) = Z/12, π7(S
4) = Z⊕ Z/12.

− : − : −

Talking of ‘topologie perdue’ van Kampen (1932) had before Stiefel a mod
2 cohomology class by counting under any general position map Kn → R2n for
pairs of disjoint n-simplices whether their intersections were even or odd; and for
n 6= 2 had sketched the sufficiency of its vanishing for embeddabilty. My talks
and writings did much (imho) to give this classic due importance, in particular
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I pointed out that the smooth Whitney trick for n > 2 which was then in the
future was not really needed, simple conical constructions did the job; and as
expected Rokhlin’s L4 provides simple examples to show insufficiency for n = 2;
but left open is the question whether a homotopy theoretic necessary condition,
which for n > 2 is equivalent, suffices for n = 2; for more musings on these
things see Switches and Fingers.

− : − : −

Since ±1 is not in Clifford’s torus T 2 ⊂ S3, in 2-planes parallel to this and a
new axis replacing pairs of points of S3 with circles having these diameters gives
a 3-torus T 3 in S4 the unit sphere of R5; then revolving again a T 4 ⊂ S5 ⊂ R6,
and so on. Choose one of its two unit normal vector fields w(v), v ∈ Tn−2

tangent to Sn−1 and twist this normal framing (v, w) using any continuous
function f(α1 = α, α2 = β, α3, ..., αn−2) of angles to get a T n−2 and then by
Pontryagin’s method a map Sn = R̂n → B̂2 = S2 having T n−2 as the pull-back
of a framed regular value. Can we get with this toral construction for any n > 2
a non-trivial element of πn(S

2)? I don’t know, but with just the sum function
α1 + · · ·+αn−2 the answer is no: the map Sn → S2 we get with this twisting is
homotopic to a composition of suspensions of the Hopf map, see Guillou-Marin,
but the 4-stem starting with π10(S

6) is zero.�

− : − : −

We note the tribar in the impossible art of Escher et al, and its kin doodled in
b b & b with other polygonal, even polytopal, sections are not only topologically
possible, ‘impossible’ tribars make the Hopf map and its suspensions: subdivide
the pull-back of a regular cell in the base space into three prisms, were this cell
structure realizable flatly–that is were these three constituent bars and the three
ells all flat–in any euclidean space, there would be no twisting, contradicting the
homotopic non-triviality.� We note this non-embeddability is stronger than if
we were to subdivide the three prisms further into simplices, when certainly we
can embed with all simplices flat in a euclidean space of high enough dimension.
This here is akin to how Pontryagin’s number of CP 2 obstructs the cell-wise flat
embeddability in any euclidean space of the Poincaré dual of any triangulation,
but now we are talking of a similar phenomenon for some subdivisions of S3

thus also of any 3-manifold, and even of some subdivisions of any non-orientable
M2 using the Möbius strip through which bing jumps in this picture story to
return now to the front door of his ome.

− : − : −

Rokhlin’s results played a key rôle in the existence and classification of
smooth and piecewise linear structures on closed manifolds. In PG&R we saw
that all this cartesian matter is but different forms of motion, and if one gives
up the unrealistic axiom that ambient space has infinite extent, that is one
adopts the relativistic viewpoint, manifolds inherit a Lipschitz structure from
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the birthing motion. Conversely per Sullivan (1976) outside dimension four any
closed manifold has a unique Lipschitz structure. So, impressive though the
aforementioned classifications are, most important to me seems this unresolved
conjecture : S4 has precisely two Lipschitz structures!

− : − : −

From Steenrod’s second letter of 1969 it seems I had plonked first for the
condition π2(D) = 0 but quickly took this move back–unlike chess mathematics
is much kinder this way!–maybe because I saw that a tubular neighbourhood D
of any surface M2 6= S2 has H2(D;Z) 6= 0 but πi(D) = 0 ∀i ≥ 2 :- the universal
covering space of M2 being contractible.�

− : − : −

In the manuscript left behind by Riemann in 1866 any M2 was viewed as a
graph w =

√
f(z) where f(z) is a polynomial with distinct roots to compute

ϑ : H1(M2;F2) → F2. We’ll instead view M2 as the index 2 quotient of a
half-turn tiling of an open disk, generated by a circularly curved polygon with
angle sum 2π, to carry out this same calculation :-

− : 20210411 : −

K S Sarkaria
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