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Introduction. The main object of this talk is to point out how ho-
mology theory arose, in a perfectly natural way, from the calculus, and to
trace the main thread of ideas which led, about a hundred years later, to the
consideration of its cyclic variants.

Also, motivated by a formula which occurs in §7 of Poincaré’s Analysis
Situs, 1895, Ill define in the end some new cohomologies. This will show
clearly that these cyclic variants could have been discovered much earlier if a
little more attention had been given to the way in which Poincaré had written
this formula.

§1. MULTIPLE INTEGRALS. Our story begins in 1895 with a definition
of POINCARE (§7 of his Analysis Situs) which I'll rephrase in the following

intuitively suggestive way.

DEFINITION. The rth Beiti number of M is the ambiguity of a locally un-
embiguous generic r-fold indefinite integral I on M.

EXPLANATION. Here M is a smooth compact manifold which comes em-
bedded in an RY and the indefinite integral is given by

I=f.../ZXal__.ardmal---d:r:a,,

where the functions X,,..4,, 1 € @; € N, are assumed defined and smooth
on a “very small” (= tubular) open neighbourhood U of M in RY.

The adjective “indefinite” of course signifies that no domain of inte-
gration c was specified for I. Regarding these we will make the simplifying
assumption that M comes equipped with a cell subdivision K, and that the
permissible ¢’s on which I is to be evaluated are linear combinations of ori-
ented r-cells of K.




Now you are doubtless familiar with the fact that a line integral (case
r = 1), when evaluated over two paths ¢ and ¢’ having the same initial and
the same final point, can give different answers.

A locally unambiguous integral will be one for which the above cannot
happen locally, 1.e. its value on any two "small” domains of integration ¢ and
¢’ is the same whenenver dc = Oc¢'.

We recall next (cf. any “advanced calculus” book) that, for the cases
N =3,r=1,and N = 3, r = 2 respectively, i.e. for line and surface integrals
of 3-space, one has the following.

/P dz + Qdy + Rdz 1s locally unambiguous if f

o9 or_or _op_or_ o _,
0z 8y Ox 8z OBy Oz

f/P dydz + @ dzdz + Rdzdy is locally unambiguous i f f

0P 0Q OR _.

Oz 6y+5#'

Poincaré criterion (Acta Math. 1882) says more generally that the
above r-fold indefinite integral I is locally vambiguous iff

Blas, - yar) |, oz yaryy) .
0 [arq1] * 9 [a] =m0 )

The above formula is written almost exactly as given in the Analysis
Situs: (aq,- -, ay) is Poincarés abbreviation for X, ..., and [a;] for z,,, and
the signs in the above cyclic sum are all positive if r is even, and alternately
positive and negative if r is odd.

Now choose any maximal set of integrally independent “closed domains”
(0c = 0) of integration ¢y, cg,-- - (note that this set is finite because of our
simplifying assumption) and let p;, ps,--- be the values of I on these. Using
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what went into Poincaré proof of (*) (for a mordernized sketch of this see §2)
it follows that the values of I over eny ¢ and ¢’ having 9c = 8¢ can differ by
at most an integral linear combination of these periods p;.

Thus the rank b,() of the additive subgroup of R generated by the pls—
incidentally this is called the period subgroup of I — is a good measure of the
(global) ambiguity of our I. A generic I is one with b.(]) maximal, and
then we have set b,(I) = b.(M). This finishes our explanation of the informal
definition given above (see also Historical Remarks given in the end).

§2 DIFFERENTIAL FORMS. The quickest way to “define” these is to

say simply that they are obtained from indefinite integrals by “erasing the
integral signs”, so e.g. I gives

W= ZX,;,tlm{,,,d..'v:o,1 A---Adzg,, .

In other words forms are assumed endowed with the algebraical proper-
ties dictated by the properties of integrals. Thus the change of variables
formula of integration tells us how they must transform under a change of co-
ordinates, in particular X, ..o, must be totally skewsymmetric in the indices,
one must have dz A dy = —dy A dz, etc.

To understand Poincaré’s condition () CARTAN defined the exterior

derivative of forms Q* 2 Q*+1 by

dw = Zd(Xm---ar) ANdzg, »+  Adzg,.

Here w € Q7 (i.e. w is any r-form on U) and d(f) denotes the total differential
of the function f.

An elementary calculation now shows that the left side of (*) is precisely
the (ay,- -, arq1)th coefficient of dw. Thus in Cartan’s notation Poincaré’s
(*) becomes simply dw = 0. '

We can now quickly sketch (in Cartan’s abbreviated notation) Poincaré’s
proof of (*). First, generalizing (by using) the fundamental theorem of

calculus, he got
] wz/dw
dec c
3




(here [ w denotes the value of the corresponding I on ¢). From this the
necessity of (*) is immediate. Next he showed that (*) implied the local
solvability of the differential equation df = w (this implication is now called
Poincaré Lemma) and then again used the above formula to obtain the
sufficiency of (*). g.e.d.

We turn next to Cartan’s reformulation of Poincaré’s definition of b.(M).
For this note that, but for genericity, the I's which were used in the definition
of §1 are precisely those which constitute ker(d). So evaluating each w € ker(d)
on the basic closed domains of integration c;, ¢z, - - we can define a surjection
of ker(d) onto a vector space of dimension b,(M) whose kernel contains im(d).
In fact (this requires care) this kernel equals im(d) : so the Betti numbers
b(M) coincide with the graded dimensions of the De Rham cohomology

Hyp = ]f%((g% of M (the name being after the mathematician who “took care”

of the above point).

§3. CURRENTS are simply things dual to forms i.e. they are linear func-
tionals C : % — C. However some care is necessary here, because Q* being
not finite-dimensional, using all linear functionals will not result in duality.
Following SCHWARTZ a way out is to demand that each C be also continu-
ous with respect to natural C'™ fopology on *. This saves the day because
now the Hahn-Banach Theorem (which holds for any Hausdorff locally convex
topological vector space) guarantees the requisite duality.

We will denote the dual complex of currents by Q, _B, Q,—1; further-

more, %r(g% will be denoted HP%(M) and called the De Rham homology

of M. Note that by definition BC(w) = C(dw), so e.g. a “closed current”
(BC = 0) is one which vanishes on im(d).

Ezamples of currents. (1) Each r-dimensional domain of integration c¢
can be identified with the r-dimensional current 8 — f 8. Under this identi-
fication Oc becomes Be. (2) Also, using the Euclidean metric on forms of RN
and the Lebesgue measure of RN one can identify r-forms w with the corre-
sponding currents § — [ {w, 6) d,u. We note that this gives a dense subspace
of 2,. Thus one can alternatively also think of the passage from forms to
currents as a completion process. (We note thus that, by going to currents,
Schwartz sort of re-inserts the integrals which Cartan had erased !)

§4. CHARACTERS. We now come to CONNES who was interested in
some “quantum spaces” (e.g. the “space of leaves” of a foliation). Then one
has no (reasonable) M, but there is a (non-commutative) analogue of the
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algebra A = C*°(M)! So he wanted to reformulate the above definition of
homology entirely in terms of A in a way that would make sense even for
non-commutative algebras.

To do this he replaced — [ am here following Connes’ book Géoméirie
Non Commutative — each r-dimensional current C' by the degree r + 1 mul-
tilinear forms 7: A x --- x A — C given by

T (fo, 1oy fr) = C(fodfs A--- A dfr).

Proposition 1. If 7 arises from an r-dimensional current C as above then
it must be a character of A, i.e. we must have

T(fﬂfl,f2,"',fr-+—1)"‘_T(f(]:flf?affh"'5f7'+1)+"'

:ET(fﬂafla'"afr—-l:frfr-i—l)q:T(fr+1f07fla"‘1fr) :03 (**)
for all fo,f1,---, fr41 € A

Proof. For r = 1 the condition is essentially 7(1f,¢)—7(1, fg)+7(g1,f) =0
and so is equivalent to the product rule fdg — d(fg) + gdf = @. Likewise for
r 2 2 the condition is true because all it is saying is that such a 7 has to
be zero on any “length r + 1 relation” generated by the product rule : more
explicitly if we use d(fifi+1) = fidfi+1 + fi+1dfi on all terms of the left side
excluding the first and the last, then in the new expression each term will
cancel with the next. ¢.e.d.

We remark that 7’s arising from C’s also satisfy some other necessary
conditions. They obey a continuity condition parallel to the one imposed on
the C’s. They are normalized, i.e. 7(fo, f1,---, f+) = 0 if, for some i > 1, f;
is a constant function. Further, they are obviously totally skewsymmetric in
variables other than f.

On the other hand there is no reason that such a 7 be skewsymmetric in
all its variables, however something less is true in one important case.

Proposition 2. A 7 arising from a C is rotationally skewsymmetric iff C is
closed.

Proof. The required 7(fo, f1,---, fr) = (=1)"7(fr, fo, f1, -, fr—1) is a con-
sequence of the fact that fodfi A---Adf, — (=1) " fedfo Adf1 A---Adfp—y is +
of the exterior derivative of (fofr)df1 A--- A dfr—1, and so the closed current
C' evaluates to zero on it. The converse is also clear. ¢.e.d.

5




Just like (*) immediately led to the exterior derivative, (**) now suggests

the Hochschild coboundary b: C*(A4, 4*) — C*t1(A, A*). More precisely,
we replace 7 : AX - x A (r+1 times) =+ Cby T: Ax --- x A (r times)
— A*, where

T(fh“'?f")(fo) =T(f0=fls""f"")a
and rewrite (++) as bT = 0, where b is defined by

(bT)(fO:fla"':fr) :fOT(fI)"'afF‘)—T(fﬂaflf%"')_'—'”
:!:T(fﬂa"'7fr—2f1‘—1,f'r)q:T(fU,""fr—l)fr'

Here, in the first and the last terms, we have used the obvious left and right
A-action on the vector space A* of all functional .4 — C (so all this makes
sense even for non-commutative algebras).

One has bob = 0 and so the Hochschild cohomology ¥} is defined. Its
importance for us stems from the following “Hodge theorem”: each Hochschild
cohomology class contains one and only one T arising from some currend.
So currents (resp. closed currents) can be replaced by (resp. rotationally
skewsymmetric) Hochschild cohomology classes. Prompted by this it was

natural for Connes to check and confirm the following striking fact.

The rotationally skewsymmetric 7’s constitute a sub cochain complez of
the Hochschild complex (C*(A, A*),b). (We note in this context — cf §5 —
that the totally skewsymmetric 7’s do not in general constitute a sub cochain

complex.) The cohomology of this sub cochain complex is called the cyeclic
cohomology HC*(A) of A.

As one would expect from the above, HC*(A) turns out to be closely
related to HPR(M) : it is itself “bigger” but some “extra modding-out”
(whose details we’ll omit) gives the latter. Also it is known now how one can
“lift” the current boundary B all the way to C*(A, A*) to get a useful (B, b)
double complez etc., etc.

However in this lecture I will go no further into these nuts-and-bolts of
cyclic homological algebra — for this see e.g. some subsequent lectures of this
Workshop and Loday’s book, Cyclic Homolegy — but will instead return once
again to the formula (*) of §1.

§5. POINCARE COHOMOLOGIES. The interpretation of Poincaré’s
(*) as dw = 0 in §2 leaves something to be desired : it does not fully “explain”
the beautiful cyclic symmetry of its left side. We will now give another (and

6




more straightforward !) interpretation of (*) which does this, and leads to
some Interesting new cohomologies.

We consider the vector space 2. (U) of all functions X from all length
r indez sequences ojoag--ar, 1 < a; < N, to A = C®(U). Cf course
if we assume skewsymmetry, X (ari0qrz -+ tnr) = (=1)* X (102 - - - &ty), with
respect to all permutations 7 of the sequences, the resulting subspace QF, (U)
identifies with that of degree r differential forms on U. However the structure
of the left side of (*) suggests that one should instead consider skewsymmetry

only with respect to rotations m of the index sequences. This yields a bigger
subspace {1 ,(U). Now (*) interprets as éX = 0 where § : Q} (U) —

cycl cycl
Q:;{(U) is defined by
(6X)arag- - opyq) =
—a—-—-X(az ey iX(az3 Qi) £ i—X(Cu Y R 2729 = =R
6a1 " 6012 r aag " ’

the signs being as per the same rule as in ().

It is easily seen that this § is an extension of the exterior derivative
d: Q5,(U) = Q731U) and that one has § 0§ = 0. So what is this cyclic
De Rham cohomology Hpg.,.(U) ? In fact é extends all the way to & :
Qiasoc(U) — QLEL(U) if we set

;! R
(6X)enag---arq1) = Z(“l)’b-ojx(ai sl Q1)

and one still has clearly § 0 § = 0. So what is this associative De Rham
cohomology H{ g, coc(U)? The answers are as follows.

Theorem. One has Hjyp, oo (U) = Hig (M) and

Hppeye(U) = €D HERY (M),
iz0

Proof of this and some other — e.g. dihedral De Rham cohomology
is defined similarly by demanding skewsymmetry with respect to rotations
and reversals m, and there is a similar formula for it with 47 instead of 2j
— “associative De Rham Theorems” will be included in the finalized notes of
my seminar of 1994-95. See also the notes of my seminar of 1993-94 for more
Poincaré’s Analysis Situs.

Historical remarks. There had been, off and on, from Zeno to Euler, some
contributions to the interplay DISCRETE «— CONTINUOQUS. However it
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was only in the XIXth century, with the need to understand discreteness in the
theory of integration, that the work of Riemann, Betti, and Poincaré moved
this interplay to mathematical centerstage. An alternative way of defining
this “ambiguity of integrals” (§1) without using integrals, is to use (instead
of their “integrands” as in §2) their permitted “domains of integration” c.
In fact the very first definition of homology given by Poincaré, in §§5-6 of
his Analysis Situs, is of such a type : it uses singular differentiable chains
¢ and is essentially today’s singular homology. Later, from §12 onwards of
Analysis Situs, Poincaré became more combinatorial, and started using a third
definition, based only on cellular ¢’s, i.e. essentially today’s usual (in the next
two lectures I'll also be looking at some “very unusual” ones !) simplicial
homology. For much more on Poincaré’s Analysis Situs see my seminar notes

of 1993-94.
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