THE ZETA FUNCTION OF A SIMPLICIAL COMPLEX

Anders Björner
Department of Mathematics, Royal Institute of Technology
S-100 44 Stockholm, Sweden
e-mail: bjorner@math.kth.se

BY

AND
Karanbir S. Sarkaria
Department of Mathematics, Panjab University
Chandigarh 160014, India

Abstract

Given a simplicial complex Δ on vertices $\{1, \ldots, n\}$ and a field F we consider the subvariety of projective ($n-1$)-space over F consisting of points whose homogeneous coordinates have support in Δ. We give a simple rational expression for the zeta function of this singular projective variety over F_{q} and show a close connection with the Betti numbers of the corresponding variety over \mathbb{C}. This connection is particularly simple in the case when Δ is Cohen-Macaulay.

1. Introduction

Let Δ be a simplicial complex on vertex set $\{1, \ldots, n\}$ and for any given field F let $V(\Delta, F)$ be the set of points in $F P^{n-1}$ (projective $(n-1)$-space over F) whose support (set of nonzero coordinate positions) belongs to Δ. This is a projective variety, being the union of linear subspaces. By the zeta function of Δ over a
finite field F_{q} we will mean the zeta function of this variety in the standard sense of algebraic geometry, namely

$$
Z_{\Delta}(q, t)=\exp \left(\sum_{k \geq 1} \operatorname{card} V\left(\Delta, F_{q^{k}}\right) \frac{t^{k}}{k}\right) .
$$

In this paper we will compute a simple rational expression for $Z_{\Delta}(q, t)$, which via the work of Ziegler and Živaljević [12] shows that the zeta function has intimate connections with the singular homology of the complex projective variety $V(\Delta, \mathbb{C})$. In fact, the filtration of the space $\|\Delta\|$ by the coskeleta of Δ provides Betti numbers that determine both the rational function $Z_{\Delta}(q, t)$ and the Betti numbers of $V(\Delta, \mathbb{C})$.

One possible interest in these observations lies in the fact that the varieties $V(\Delta, F)$ are highly singular, so that available theory does not seem to be able to predict such a precise connection between counting over finite fields and topology over \mathbb{C}. As is well known, in the case of nonsingular projective varieties the Weil conjectures $[2,4]$ give very detailed information of this sort.

In the nonsingular case it follows from the Deligne-Grothendieck-Weil theorem that the Betti numbers of the complex variety are determined by the zeta function. This is not in general true for the simplicial complex varieties $V(\Delta, \mathbb{C})$ considered here, but we will show a tight connection in the important case of Cohen-Macaulay complexes.

Another possible interest in this work is for potential use in f-vector theory. As we remark in Section 4 all questions about f-vectors of Cohen-Macaulay complexes can be translated into questions about Betti numbers of the corresponding varieties. This is reminiscent of the situation for polytopes and toric varieties, see [9], although the varieties $V(\Delta, \mathbb{C})$ unfortunately lack many of the good special properties of toric varieties.

2. The basic results

We will assume familiarity with the basic combinatorial and topological properties of (abstract) simplicial complexes; see Munkres [5] for this material. Throughout the paper Δ will be a simplicial complex of dimension d on vertex set $\{1, \ldots, n\}$. The f-vector of Δ is $f(\Delta)=\left(f_{0}, f_{1}, \ldots, f_{d}\right)$, where f_{j} is the
number of j-dimensional faces. Let

$$
\begin{equation*}
f_{j}^{*}:=\sum_{i=j}^{d}(-1)^{i-j}\binom{i}{j} f_{i}, \quad \text { for } j=0, \ldots, d \tag{1}
\end{equation*}
$$

and call $f^{*}(\Delta)=\left(f_{0}^{*}, f_{1}^{*}, \ldots, f_{d}^{*}\right)$ the f^{*}-vector of Δ. The relation (1) can be inverted,

$$
\begin{equation*}
f_{j}=\sum_{i=j}^{d}\binom{i}{j} f_{i}^{*} \tag{2}
\end{equation*}
$$

The coskeleton $\Delta^{\geq j}$ is defined by $\Delta^{\geq j}=\{\sigma \in \Delta: \operatorname{dim} \sigma \geq j\}$. We think of $\Delta^{\geq j}$ as a simplicial complex by passing to its "order complex", i.e., the faces of $\Delta \geq j$ are the chains $\sigma_{0} \subset \sigma_{1} \subset \cdots \subset \sigma_{s}$ with $\sigma_{i} \in \Delta^{\geq j}$. From this point of view $\Delta^{\geq 0}$ is the barycentric subdivision of Δ, so the chain of inclusions $\Delta^{\geq d} \subset$ $\Delta^{\geq(d-1)} \subset \cdots \subset \Delta^{\geq 0}$ gives a filtration of the space $\|\Delta\| \cong\left\|\Delta^{\geq 0}\right\|$.

Lemma 2.1: $f_{j}^{*}=\chi\left(\Delta^{\geq j}\right)$, for $j=0, \ldots, d$.
Proof: The computation is most easily done using the theory of Möbius functions, see [10, Chap. 3]. Let $P=\Delta^{\geq j} \cup\{\hat{0}, \hat{1}\}$, the poset of faces of Δ of dimension $\geq j$ augmented by a top and a bottom element, and let μ be its Möbius function. By Hall's theorem [10, p. 120] we have

$$
\begin{equation*}
\chi\left(\Delta^{\geq j}\right)=\mu(\hat{0}, \hat{1})+1 . \tag{3}
\end{equation*}
$$

If $\operatorname{dim} \sigma=i(j \leq i \leq d)$ then $P_{\leq \sigma}=\{\tau \in P \mid \tau \leq \sigma\}$ is a lower-truncated Boolean algebra (all subsets of size $\geq j+1$ in an $(i+1)$-set), so $\mu(\hat{0}, \sigma)=(-1)^{i-j-1}\binom{i}{j}$. Hence

$$
\mu(\hat{0}, \hat{1})=-\sum_{\sigma<\hat{1}} \mu(\hat{0}, \sigma)=-1+\sum_{i=j}^{d} f_{i}(-1)^{i-j}\binom{i}{j},
$$

which with (1) and (3) proves the result.
The zeta function of Δ over F_{q} (the finite field of order q) was defined in the introduction. In the following we suppress the prime power q from the notation. It follows from the work of Dwork [3] that $Z_{\Delta}(t)$ is a rational function. In fact, it has the following explicit form.

Theorem 2.2:

$$
Z_{\Delta}(t)=\prod_{j=0}^{d} \frac{1}{\left(1-q^{j} t\right)^{f_{j}^{*}}} .
$$

Proof: The points $x=\left(x_{1}, \ldots, x_{n}\right)$ on the projective variety $V\left(\Delta, F_{q^{k}}\right)$ are partitioned by their supports $\left\{i: x_{i} \neq 0\right\} \in \Delta$. If $\operatorname{dim} \sigma=i$ then there are clearly $\left(q^{k}-1\right)^{i}$ points with support equal to σ (each of the $i+1$ nonzero positions can be filled in $q^{k}-1$ ways and then we must divide by $q^{k}-1$ to account for projective equivalence). Hence,

$$
\begin{aligned}
\sum_{k \geq 1} \operatorname{card} V\left(\Delta, F_{q^{k}}\right) \frac{t^{k}}{k} & =\sum_{k \geq 1} \sum_{i=0}^{d} f_{i}\left(q^{k}-1\right)^{i} \frac{t^{k}}{k} \\
& =\sum_{k \geq 1} \sum_{i=0}^{d} \sum_{j=0}^{i} f_{i}(-1)^{i-j}\binom{i}{j} q^{k j} \frac{t^{k}}{k} \\
& =\sum_{j=0}^{d} \sum_{k \geq 1} \frac{\left(q^{j} t\right)^{k}}{k} \sum_{i=j}^{d}(-1)^{i-j}\binom{i}{j} f_{i} \\
& =\sum_{j=0}^{d} f_{j}^{*} \sum_{k \geq 1} \frac{\left(q^{j} t\right)^{k}}{k} \\
& =\sum_{j=0}^{d} f_{j}^{*} \log \frac{1}{1-q^{j} t} \\
& =\log \left(\prod_{j=0}^{d} \frac{1}{\left(1-q^{j} t\right)^{f_{j}^{*}}}\right) .
\end{aligned}
$$

The following formula for the singular homology of the complex projective variety $V(\Delta, \mathbb{C})$ is due to Ziegler and Živaljević [12, Proposition 2.15]. There is a misprint in the original formulation; for a correction and additional discussion see [11, Corollary 6.7].

Theorem 2.3 (Ziegler and Živaljević):

$$
H_{i}(V(\Delta, \mathbb{C}) ; \mathbb{Z}) \cong \bigoplus_{j=0}^{d} H_{i-2 j}\left(\Delta^{\geq j} ; \mathbb{Z}\right)
$$

Thus, the Betti numbers of the coskeleta $\Delta^{\geq j}$ determine, on the one hand, the Betti numbers of $V(\Delta, \mathbb{C})$ and, on the other, the zeta function of Δ.

Corollary 2.4: $\chi(V(\Delta, \mathbb{C}))=f_{0}$.

Proof: With the obvious choice of notation (see definition (5) below) we have

$$
\begin{aligned}
\chi(V(\Delta, \mathbb{C})) & =\sum_{i=0}^{2 d}(-1)^{i} \beta_{i}^{\mathbb{C}}=\sum_{i=0}^{2 d} \sum_{j=0}^{d}(-1)^{i} \beta_{i-2 j}^{\geq j} \\
& =\sum_{j=0}^{d} \chi\left(\Delta^{\geq j}\right)=\sum_{j=0}^{d} f_{j}^{*}=f_{0} .
\end{aligned}
$$

For the last equality see (2).
We will end this section with an informal description of what the varieties $V(\Delta, F)$ "look like". The discussion will use the complex field $F=\mathbb{C}$ for the relevant geometric visualization but it is in principle completely general.

As a first small example let us take for Δ the boundary of a 2 -simplex, i.e. Δ has 3 vertices and 3 edges. Then $V(\Delta, \mathbb{C})$ is homeomorphic to the union of three touching billiard balls (surface only). The i-th ball is the set of projective points $\left(z_{1}, z_{2}, z_{3}\right)$ with $z_{i}=0(i=1,2,3)$, which is a copy of $\mathbb{C} P^{1} \cong S^{2}$, and two balls touch in $z_{i}=z_{j}=0$ which is $\mathbb{C} P^{0}=$ point. This description immediately generalizes to any 1-dimensional complex Δ : the edges of Δ become 2-spheres in $V(\Delta, \mathbb{C})$ and vertices become points of contact. One can visualize $V(\Delta, \mathbb{C})$ by thinking of the graph Δ and then replacing each edge by a thin tube pinched at the endpoints.

For a general simplicial complex and a general field the picture is entirely similar. Each j-dimensional face is in $V(\Delta, F)$ represented by a copy of $F P^{j}$ (living on the corresponding coordinate positions), and these projective spaces are glued together by inclusions in the same pattern as that of Δ. Thus $V(\cdot, F)$ is a functor - cf. $\S 4$ of [7] - by means of which we are "visualizing" the category of incidences of the simplicial complex Δ.

One can play the zeta game with other algebraic geometric visualizations of Δ also. For example, one has the affine variety covering $V(\Delta, F)$, i.e. the set $\widehat{V}(\Delta, F)$ of points of $F^{n} \backslash\{0\}$ whose support belongs to Δ; so $V(\Delta, F)$ is the quotient of $\widehat{V}(\Delta, F)$ under the action of the multiplicative subgroup F^{*} of the field F. The definition and computation of the zeta function of \widehat{V} is analogous to that of V.

Theorem 2.5:

$$
\widehat{Z}_{\Delta}(t)=\prod_{j=0}^{d+1} \frac{1}{\left(1-q^{j} t\right)^{\hat{f}_{j}}},
$$

where

$$
\begin{equation*}
\widehat{f_{j}}=f_{j-1}^{*}-f_{j}^{*}=\sum_{i=\max \{j-1,0\}}^{d}(-1)^{i+1-j}\binom{i+1}{j} f_{i} \tag{4}
\end{equation*}
$$

This time the singular homology of the variety over \mathbb{C} is given by the following (where $\sigma=\emptyset$ is allowed and reduced homology is used).

Theorem 2.6 ([12]):

$$
\widetilde{H}_{i}(\widehat{V}(\Delta, \mathbb{C}) ; \mathbb{Z}) \cong \bigoplus_{\sigma \in \Delta} \tilde{H}_{i-2|\sigma|}\left(\mathrm{lk}_{\Delta}(\sigma) ; \mathbb{Z}\right)
$$

In fact $\widehat{V}(\Delta, \mathbb{C})$, or equivalently its intersection $\operatorname{Sph}_{\mathbb{C}}(\Delta)$ with the unit sphere of \mathbb{C}^{n}, has the homotopy type of the bouquet $\mathrm{V}_{\sigma \in \Delta}\left(\mathrm{lk}_{\Delta}(\sigma) * S^{2|\sigma|-1}\right)$; cf. ZieglerŽivaljević [12] who prove the analogous formula

$$
\tilde{H}_{i}(\widehat{V}(\Delta, \mathbb{R}) ; \mathbb{Z}) \cong \bigoplus_{\sigma \in \Delta} \widetilde{H}_{i-|\sigma|}\left(\mathrm{lk}_{\Delta}(\sigma) ; \mathbb{Z}\right)
$$

for the variety over \mathbb{R}.
Lemma 2.7:

$$
\begin{aligned}
& \widehat{f}_{j}=-\sum_{|\sigma|=j} \tilde{\chi}\left(l k_{\Delta}(\sigma)\right), \quad \text { for } 1 \leq j \leq d+1 \\
& \widehat{f_{0}}=-\chi(\Delta)
\end{aligned}
$$

These formulas (where reduced Euler characteristics of links are used in the first one) follow easily from (4) and give a connection between the zeta function of \widehat{V} and its singular homology analogous to that for V.

Following [7] it is also useful to think of $\operatorname{Sph}_{\mathbb{C}}(\Delta) \simeq \widehat{V}(\Delta, \mathbb{C})$ as a small deleted join of Δ with respect to the group $G=S^{1} \simeq \mathbb{C}^{*}$. For example, see [8], which gives an interesting geometric application of the Chern class of the circle bundle $\operatorname{Sph}_{\mathbb{C}}(\Delta) \rightarrow V(\Delta, \mathbb{C})$. By using higher linear groups $\mathrm{GL}(m, F)$ one can also consider zeta functions of other affine and projective visualizations of Δ.

For other aspects of the varieties associated to simplicial complexes, see $[1, \S 11.2]$ and $[7, \S 4]$.

3. The Cohen-Macaulay case

Let us now assume that Δ is a Cohen-Macaulay complex (in characteristic zero). Topologically this means that reduced homology with complex coefficients vanishes below the top dimension both for Δ itself and for links $\mathrm{lk}_{\Delta}(\sigma)$ of all faces $\sigma \in \Delta$. Algebraically it means that the Stanley-Reisner ring $\mathbb{C}[\Delta]$, or equivalently the homogeneous coordinate ring of $V(\Delta, \mathbb{C})$, is Cohen-Macaulay. Some examples of Cohen-Macaulay complexes are Tits buildings, matroid complexes and triangulations of spheres. See Stanley [9] for a thorough discussion of this notion and its background in commutative algebra.

The following is an immediate consequence of the "rank-selection theorem" [9, Theorem III.4.5] applied to the face lattice of Δ.

Lemma 3.1: If Δ is Cohen-Macaulay then so is every coskeleton $\Delta^{\geq j}$.
Hence, because of the vanishing of reduced homology below the top dimension, we deduce from this and Lemma 2.1:

Corollary 3.2: If Δ is Cohen-Macaulay of dimension d, then

$$
f_{j}^{*}= \begin{cases}1+(-1)^{d-j} \beta_{d-j}\left(\Delta^{\geq j}\right), & j=0, \ldots, d-1 \\ \beta_{0}\left(\Delta^{\geq d}\right), & j=d .\end{cases}
$$

From now on we assume that Δ is Cohen-Macaulay of dimension d, and we use the abbreviated notation

$$
\begin{equation*}
\beta_{i}^{\mathbb{C}}:=\operatorname{dim}_{\mathbb{C}} H_{i}(V(\Delta, \mathbb{C}) ; \mathbb{C}) \quad \text { and } \quad \beta_{i}^{\geq j}:=\operatorname{dim}_{\mathbb{C}} H_{i}\left(\Delta^{\geq j} ; \mathbb{C}\right) \tag{5}
\end{equation*}
$$

for the respective Betti numbers. The variety $V(\Delta, \mathbb{C})$ is $2 d$-dimensional, so $\beta_{i}^{\mathbb{C}}=0$ for $i>2 d$ and $i<0$. For the remaining cases we get the following.

Proposition 3.3: For Δ Cohen-Macaulay we have

$$
\begin{aligned}
0 \leq i<d \Longrightarrow \beta_{i}^{\mathbb{C}} & = \begin{cases}1, & i \text { even, } \\
0, & i \text { odd },\end{cases} \\
0 \leq j \leq d \Longrightarrow \beta_{2 d-j}^{\mathbb{C}} & = \begin{cases}\beta_{j}^{\geq d-j}, & j=0 \text { or } j \text { odd }, \\
\beta_{j}^{\geq d-j}+1, & j>0 \text { and } j \text { even. }\end{cases}
\end{aligned}
$$

Proof: This results from substituting

$$
\beta_{i}^{\geq j}= \begin{cases}0, & 0<i<d-j \\ 1, & i=0 \text { and } j<d\end{cases}
$$

into $\beta_{i}^{\mathbb{C}}=\sum_{j=0}^{d} \beta_{i-2 j}^{>j}$ (Theorem 2.3).
Putting this information together with Corollary 3.2 we obtain the following direct relationship between the f^{*}-vector of a Cohen-Macaulay complex and the essential Betti numbers $\beta_{i}^{\mathbb{C}}(d \leq i \leq 2 d)$ of its corresponding variety $V(\Delta, \mathbb{C})$.

Proposition 3.4: For Δ Cohen-Macaulay we have $(0 \leq j \leq d)$:

$$
f_{d-j}^{*}= \begin{cases}\beta_{2 d-j}^{\mathrm{C}}, & j \text { even } \\ 1-\beta_{2 d-j}^{\mathrm{C}}, & j \text { odd }\end{cases}
$$

We can now formulate the consequence of all this for the zeta function.
Theorem 3.5: If Δ is Cohen-Macaulay, then

$$
Z_{\Delta}(t)=\prod_{j=0}^{d}\left(1-q^{d-j} t\right)^{(-1)^{j+1} \beta_{2 d-j}^{\mathrm{C}}-\delta_{j}}
$$

where $\delta_{j}=1$ if j is odd and $=0$ otherwise.
Proof: This is a direct consequence of Theorem 2.2 and Proposition 3.4.
The formula

$$
\begin{equation*}
Z_{\Delta}(t)=\frac{\left(1-q^{d-1} t\right)^{\beta_{2 d-1}^{\mathrm{C}}-1}\left(1-q^{d-3} t\right)^{\beta_{2 d-3}^{\mathrm{C}}-1} \cdots}{\left(1-q^{d} t\right)^{\beta_{2 d}^{\mathrm{C}}}\left(1-q^{d-2} t\right)^{\beta_{2 d-2}} \ldots} \tag{6}
\end{equation*}
$$

(i.e., Theorem 3.5) shows that in the Cohen-Macaulay case the zeta function of Δ and the Betti numbers of $V(\Delta, \mathbb{C})$ mutually determine each other. Let us illustrate this formula with a few examples.

Example 3.6: Let Δ be the full simplex of all subsets of $\{1, \ldots, n\}$. Then $f_{j}^{*}=1$ for all $j=0, \ldots, d=n-1$, since $\Delta^{\geq j}$ is a cone (as a poset it has a maximal element). Hence (by Theorem 2.2)

$$
Z_{\Delta}(t)=\prod_{j=0}^{d} \frac{1}{1-q^{j} t}
$$

On the other hand, $V(\Delta, \mathbb{C})=\mathbb{C} P^{d}$ (the full projective space), which has Betti numbers $\beta_{i}^{\mathbb{C}}=1$ if i is even and $0 \leq i \leq 2 d$, and $\beta_{i}^{\mathbb{C}}=0$ otherwise. This produces via formula (4) the same expression for $Z_{\Delta}(t)$.

Example 3.7: Let Δ be a 1 -dimensional Cohen-Macaulay complex (i.e., a connected graph) with v vertices and e edges. Then $f_{0}^{*}=\chi(\Delta)=v-e$ and $f_{1}^{*}=\chi\left(\Delta^{\geq 1}\right)=e$, so

$$
Z_{\Delta}(t)=(1-t)^{e-v}(1-q t)^{-e} .
$$

From the topological description of $V(\Delta, \mathbb{C})$ given at the end of Section 2 (inflate the edges of Δ to thin tubes) one computes by elementary considerations the Betti numbers $\beta_{0}^{\mathbb{C}}=1, \beta_{1}^{\mathbb{C}}=1+e-v, \beta_{2}^{\mathbb{C}}=e$, which via (6) also yields $Z_{\Delta}(t)$.

Example 3.8: Let Δ be the boundary complex of a ($d+1$)-simplex. Then $\Delta^{\geq j}$ consists of all proper subsets of cardinality $\geq j+1$ in $\{1, \ldots, d+2\}$, so $f_{j}^{*}=$ $\chi\left(\Delta^{\geq j}\right)=1+(-1)^{d-j}\binom{d+1}{j}$ for $j=0, \ldots, d$. (Cf. the proof of Lemma 2.1.) In this case it is not as easy to compute the Betti numbers of $V(\Delta, \mathbb{C})$ by inspection, but via Proposition 3.3 and 3.4 we get

$$
\beta_{2 d-j}^{\mathrm{C}}= \begin{cases}1+\binom{d+1}{j+1}, & \text { if } 0 \leq j \leq d \text { and } j \text { even } \\ \binom{d+1}{j+1}, & \text { if } 0 \leq j \leq d \text { and } j \text { odd, } \\ 1, & \text { if } d<j \leq 2 d \text { and } j \text { even } \\ 0, & \text { otherwise }\end{cases}
$$

The variety $V(\Delta, \mathbb{C})$ is what remains of $\mathbb{C} P^{d+1}$ after removing all points with no zero homogeneous coordinate; in other words, it is the union of the $d+2$ standard choices for "hyperplanes at infinity".

4. Final remarks

(4.1) There is a large literature on f-vectors of simplicial complexes (defined in Section 2), see e.g. Stanley [9]. In this area the h-vector

$$
h(\Delta)=\left(h_{0}, h_{1}, \ldots, h_{d+1}\right)
$$

defined by

$$
\begin{equation*}
h_{j}:=\sum_{i=0}^{j}(-1)^{j-i}\binom{d+1-i}{d+1-j} f_{i-1} \tag{7}
\end{equation*}
$$

plays an important role. Here we assume $\operatorname{dim} \Delta=d$ and put $f_{-1}:=1$. Knowing the h-vector of Δ is equivalent to knowing the f-vector. Equations (1) and (2) show that knowing the f^{*}-vector of Δ also gives equivalent information. In fact,
comparison of equations (1) and (7) shows that $f^{*}(\Delta)$ and $h(\Delta)$ are related to $f(\Delta)$ in formally very similar fashion, namely by an upper-triangular resp. lower-triangular matrix of similar structure. Solving for $h(\Delta)$ directly in terms of $f^{*}(\Delta)$ one gets

$$
\begin{equation*}
h_{j}=(-1)^{j}\binom{d+1}{j}+(-1)^{j+1} \sum_{i=0}^{d+1-j}\binom{d-i}{j-1} f_{i}^{*} \tag{8}
\end{equation*}
$$

for $j=1, \ldots, d+1$. In the Cohen-Macaulay case information equivalent to either of $f(\Delta), h(\Delta)$ or $f^{*}(\Delta)$ is given also by the Betti numbers of the complex projective variety $V(\Delta, \mathbb{C})$, as shown by Proposition 3.4.
(4.2) Suppose that the Euler characteristic of $\mathrm{lk}_{\Delta}(\sigma)$ equals the Euler characteristic of a sphere of the same dimension for all faces $\sigma \in \Delta$ of dimension $\geq k$. This is true, for instance, for all triangulations of manifolds (with $k=0$). Combinatorially the condition is equivalent to demanding that $\mu(\sigma, \hat{1})=$ $(-1)^{\text {corank } \sigma}$ in the face lattice of Δ for all faces σ of dimension $\geq k$. In this case we get an alternative expression for part of the f^{*}-vector:

$$
\begin{equation*}
f_{j}^{*}=\sum_{i=j}^{d}(-1)^{d-i} f_{i}, \quad j=k, \ldots, d \tag{9}
\end{equation*}
$$

Namely,

$$
\begin{aligned}
f_{j}^{*} & =\chi\left(\Delta^{\geq j}\right)=1+\mu(\hat{0}, \hat{1})=1-\sum_{\hat{0}<x} \mu(x, \hat{1}) \\
& =-\sum_{\hat{0}<x<\hat{1}}(-1)^{\operatorname{corank} x}=f_{d}-f_{d-1}+\ldots+(-1)^{d-j} f_{j} .
\end{aligned}
$$

Equating the two expressions (1) and (9) for f_{j}^{*} we get relations

$$
\begin{equation*}
\sum_{i=j}^{d}\left[(-1)^{i-j}\binom{i}{j}+(-1)^{d-i+1}\right] f_{i}=0 \tag{10}
\end{equation*}
$$

satisfied by the f-vectors of this class of complexes for all $k \leq j \leq d$. For $k=0$ and d odd these relations are equivalent to the Dehn-Sommerville equations; see e.g. [10, p. 136]. For $k=0$ and d even the relations (10) have to be augmented by $\chi(\Delta)=2$ to obtain the Dehn-Sommerville equations.
(4.3) The usual functional equation (for smooth varieties) between the values at t and at $\left(q^{d} t\right)^{-1}$, see e.g. [4], rarely holds for the zeta function $Z_{\Delta}(q, t)$ of the singular varieties $V(\Delta, F)$. However, there sometimes is a "functional equation" of sorts between the values of its derivative at q and $1-q$. Namely, for any simplicial d-manifold Δ with zero Euler characteristic one has

$$
\begin{equation*}
(1-q) Z_{\Delta}^{\prime}(q, 0)=(-1)^{d+1} q Z_{\Delta}^{\prime}(1-q, 0), \tag{11}
\end{equation*}
$$

where $Z_{\Delta}^{\prime}(q, t)$ denotes the derivative of $Z_{\Delta}(q, t)$ with respect to t. Indeed, using Theorem 2.2 we get $Z_{\Delta}(q, t)=1+f^{*}(q) t+O\left(t^{2}\right)$, where $f^{*}(z)=f_{0}^{*}+f_{1}^{*} z+$ $\cdots+f_{d}^{*} z^{d}$, and by (1): $z f^{*}(1-z)=f(z)$, where $f(z)=f_{0} z-f_{1} z^{2}+f_{2} z^{3}+$ $\cdots+(-1)^{d} f_{d} z^{d+1}$. So (11) is equivalent to $f(1-q)=(-1)^{d+1} f(q)$, i.e. to the Dehn-Sommerville equations (10). See also [6] for related remarks.

References

[1] A. Björner, Subspace arrangements, in First European Congress of Mathematics, Paris 1992 (A. Joseph et al., eds.), Progress in Mathematics 119, Birkhäuser, Boston, 1994, pp. 321-370.
[2] P. Deligne, La conjecture de Weil. I, Publications Mathématiques de l'Institut des Hautes Études Scientifiques 43 (1973), 273-307.
[3] B. Dwork, On the rationality of the zeta function of an algebraic variety, American Journal of Mathematics 82 (1960), 631-648.
[4] E. Freitag and R. Kiehl, Étale cohomology and the Weil conjecture, Ergebnisse Series, Vol. 13, Springer-Verlag, Berlin, 1988.
[5] J. R. Munkres, Elements of Algebraic Topology, Addison-Wesley, Menlo Park, 1984.
[6] K. S. Sarkaria, A "Riemann Hypothesis" for triangulable manifolds, Proceedings of the American Mathematical Society 90 (1984), 325-326.
[7] K. S. Sarkaria, Some simplicial (co)homologies, Lectures given in Chandigarh Cyclic (Co)homology Workshop = I.H.E.S. preprint, 1995.
[8] K. S. Sarkaria, Sierksma's Dutch Cheese Problem, to appear.
[9] R. P. Stanley, Combinatorics and Commutative Algebra, 2nd edn., Birkhäuser, Boston, 1995.
[10] R. P. Stanley, Enumerative Combinatorics, Vol. I, Wadsworth \& Brooks, Monterey, CA, 1986.
[11] V. Welker, G. M. Zielger and R. Živaljević, Comparison lemmas and applications for diagrams of spaces, Preprint No. 11, Institut für Experimentelle Mathematik, Essen, 1995.
[12] G. M. Ziegler and R. T. Živaljević, Homotopy types of subspace arrangements via diagrams of spaces, Mathematische Annalen 295 (1993), 527-548.

