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The DeRham Cohomolozy of Foliated Manifolds

Introduction (4) We first point out in broad outline

Introductlon
the object of our study, and why it is worth studying.
Think of a p=-covecter at x ¢, where M is a
smooth m dimensional manifeld, as a skewsymmetric and
multilinear map T, X « « « xT, (p times) (ﬁ? R T,
being the tangent space of Xx. We shall say that Wy is
of filtration > i with respect to a subspace D, =T, if
it vanishes whenever p
Let us now suppose that M is supplied with a tangent
subbundle DeT. Then a form g will be said to be of

filtration >

11f oy is such for each x€M. Thus we
get 2 decreasing sequence of vector spaces

L= AgDh 20 - PAP Ay T 0y As being all smooth

forms of filtration > 1.

The derham cohomology of M is the homology of A

. under the exterior derivative dip=A; H(A) = ker d/Im da

Qur starting point is the simple observation that D is

involutive if and onlv if the exterior derivative

preserves the filtration. So each Ay is now a sub-

complex of A, and A is a filtered complex. On the
other hand by Frobenius theorem--see, .5 [3#]--0-13

foliations

1oLl o

involutive if and only if it is tangent to a

in other words, M can be coverad by coordinate

-i+1 of the arguments are in D .

Here ¢ = codimension of D in T.

neighborhoods HypeenaXyay gaeneaky such that locally
a/axl,...,a/axl form a basis for D,. In this way i
is partitioned into l-dimensional manifolds called the
Leaves of the foliation; each leaf being a maximal
connected sub-manifold given locally by some constant
values for HygppoeroaXpe

Hence to each pair (M,foliation)--i.e. to a
foliated manifold M--is attached in a natural way a

filtered complex A. Our object is to studv this

filtered complex. We recall that by standard homo~-

logical algebra, as in [?]‘ one can attach to any
filtersd complex an object called its spectiral sequence.
It consists of a sequence Er of graded groups, each of
which is the homology of the preceding under a dif-
ferential dr' such that EO is the graded group of A
(under above filtration) and the final term ﬁ --which
is attainable in a finite number of steps--iswthe
graded group of H(A) (under the obvious induced filtra-
tion) .

A better idea of the importance, and scops, of
such an investization can be formed by considering the

analagous case of complex manifolds. In this case we

have a similar spectral sequence with E, = H(Ac)——i.e.,

the complex deRhanm cohomology=-and E1 is the so called




Dolbezut cohomolozy. 4 vast theory is centered around
this cohomology (see, e.g. [15]). Deep results
requiring both analytical and algebraic techniques

have been attained. For instance one has the finite-

ness theorem (i.e., if M is compact Ey is finite

dimensional), the duality theorem (i.e., for o

compact Ef'q B Eil/z - Poy/2 - 9y; and, on the algebraical"

side, one can mention results involving characteristic
clasges (e.g., for M compact 2 (—1)qeg'q = chM tdM,
ey = dim Eqs this is called the Riemann Roch theorem).
These three specimen results due«zf-espectively-to
Cartan=Serre, Serre and Hirzebruch have in turn led to
very interesting generalizations due to Grothendieck-
Grauert, Grothendieck and Grothendieck-Atiyah-Singer
and others. ‘

The results, concepts and constructions oc-
curring in this work should all be viewed as. part of
an ongoing and extensive programme whose goal is to
build a similar body of knowledge for foliated mani-
folds. .

(B} The following is a summary of the con=-
tents. "

Sections 1-5 give a rapid review of the

apparatus of our spectral sequence, following Cartan=

Eilenberg [7].

In sections 6-7 we show that Ef'q = H%(1,D0P).
Here gp is the sheaf of germs of smooth forms of degree
p which are transverss and invariant: a p form g is
called transverse if ménp, it is called invariant if
L = 0 for any vector field Xé C(D). Qo--or just

D--is simply the gheaf of germs of smooth furctions

which are constant on leaves. It plays an important

role in many places.

Section 8 studies complex line bundles. Let
36:
g% (resp. g;) dencte the sheaf of germs of smocth
nonzero compleX valued functions (resp. those that are
constant on leaves). Now, the isomorphismclasses of
such bundles form a group under tensor product, viz.,
2 * : .
H (M.Qs): and the sheaf inclusjion g;cgg gives us a

1 2

map H (;-I,CB) *hl(rct,g:} whose image gives us the in=-

variant line bundles. The first chern class of a

line tundle EEH (M,}) is an element c,(g) € K2(,2).
We shall say that a chern class vanishes in D if it is
killed by the induced map HZ(Ev':,Z) 4}{2(1:1,2). We see
that the first chern class of a line bundle vanishes
in D if and enly if it is invariant. For an analagous

result for analytic line bundles over a complex mani-
fold, see [15].

In sections 9, 10 we study two notions of

e
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homotopy. In the categoery of foliated manifolds tha
morphisms are those which map leaves into leaves. Iwo
such maps f,giM~+MN' are called k-homotopic (k=1,2) if
they can be extended to a morphism Fal{x I =+ M* where
MxI carries the k-foliation (k=1,2). Here the 1-
foliation is given by multiplying each leaf of M by I,
and the 2-foliation is the natural l-dimensional
foliation on MxI. Then we construct a k-chain
homotopy (batwean the induced maps f,m: ) e a(m) of
filtered complexes) by using a k-homotopv; L.e., @
chain homotopy that "disturbs” filtration by k-1
units. Thus wa can think of the spectral sequence Br.
for rzk, as & functor attached to the k-homotopy
category (k=1,2) of foliated manifolds, by usual
homolegical algebra ([7]).

Sections 11, 12 involve some simple observa-
tions about the relationship of the exterior product to
the filtration. Since our filtration is of length e,
if a form of filtratlon i is multiplied by a form of
filtration j and i+j>c we get 0. Using this we sae

that an odd dimensiocnal foliation can have

dim Hzck(u_g dim 12K 0 k4 = 0. Here
(31 -

Hy(A) is the part of H(a) of filtration = ji (§] is

the first integer after % and sign M is the signature

of ¥. We shall say that a foliation cbeys Serre
duality if 2809 = 287P 2", 14 4 clear that such
foliations satisfy the above inequality.

In section 13 we extend the definition of

section 8 to define invariant complex veetor bundles:

Let Gs (resp GD) danote the sheafl of germs of smooth
funetion with walues in GL(n,C) (resp. those that are
constant on leaves). Now the lsomorphisz classes
form only a sst HJ’{H.GS). and we consider the image of
rhn,6,) -n"(u.cs). [Note that with a stricter
definition of "isomorphism” HI(M.GD} is the set of
isomorphisa classes of all 1nv3riant tundles: this
notion shall play a role in section 19. Purther it
plays a role in a natural K theory of invariant

bundles.] We show that the real chern rine of an

invariant complex vector bundle vanishes in dimensions

= 2¢c. Applying this result to the complexification of
the bundle D' of transverse 1-forms cne gets Bott's
vanishing thecrem [4¥]. Note that no connection theory
is used in the proof.

Corresponding to any two projection maps
PD.PNsT-vT with images D and N s.%. D+ N = T, one has
& natural bigradation of A, and the differential d‘ is
the sum of three differentials dol' ﬂlO' “2-1 of




bidegrees (0,1), (1,0}, (2.-1) respectively. see [13]-
In section 1% we show that E, = Hy. {p) end
10

Ez-*z‘—-“dﬁﬂn#hl' [Follewing [7], this means that
Ey.Ey are the firat 2 terms of the spectral sequence of
the double complex u"doi'dlom The complex of sheaves
p&pl S ... %p%+0 (wnich is in fact exact) has 2
standard spectral sequences) 5€8, 8.E., [35]. Using
the notations of [35]. the E, term of the "scecond®
speetral sequence 1s same 23 Ep of our spectral
sequence. This is shown in section 15, We see from

these that if the folistion arises from a fibration the

term is the same as that in Serre's spectral geguenca

Es
of a fibering [317.

Section 16 covers the functional analysis that
is relevant to finiteness theorems. de put on A the
usual Frechet space topology. 5o it induces on each E.
a topological vector space topology. We resall the
usual definition of a smoothing map (= integral opera-
tor) ssp+h. ARy %-chain homotopy between 1 and s will
be ealled a k-parametrix (of d). We show, under some
additional conditions, that on a compact foliated

panifold, the existence of a k-parametrix implies that
E, is finite dimensional. This result is the reason

why wa shall be interested in k-parametrices. we alseo

point out in this section that if dim E_ = e_ < =, then
, v

x(#) = L (-1)¥ %2 Hero x(k) is the Eule:
characteristic of M.

In section 17 we construct, by modifying
techniques given in [11], & 2-parametrix in.ths fol-
lowing special caser gassume that there exists a
continuous uniforaly transitive map Fi3%=cT(M,H), with

B{0) = 1, then there exists a 2 parametrix., Hers

CI{M.HJ consisis of all smeoth maps M=} which map
leaves into leaves; it is given the usual ¢*
topology. By uniformly transitive we mean that there
is a neighborhood U of 0 & gm whieh, for all x¢NM,
gives us a diffeomorphism Py, of U onto a neighborhood
of x by F.(n) = F(n)(x). We point out that this
othesis is fulfilled if a eomsact foliated panifeld

M _has a global parallelisn by vector fields which are

infinitesimal transformations of the foliate structura.
Section 18 records some tid-bits which may be

of value. E.g., we point out that an obvicus extension

of a "patching argument” of [11] allows us to show that

if the foliation arises from a fibration then there is

8 2-parametrix. Again, now let's suppose that ¥ is

oriented. If the differentials dgadyeess of the




spectral sequence are assumed to be topological homo-
morphisms then the foliation obeys Serré's duality.
This hypothesis is satisfied if dim Ey <. Hence pdd
dimensional foliations with dim B <o exist only if

signature (M) = 0. We shall also recall in this

article an example which shows that for almost all

irrational flows on the torus dim By <w. But There
exist irrational flows for which this is no longer
true.

Section 19 studies the inter-relationships

between reduction of the structure sheaf of a bundle--

see [12a] and sections 8,13 above--and gonnection
theory. In section 19a we think of a connection on a
real vector bundle W over M as a derivation of A(W),
31A(W) » A(¥), lying above d (p.76). Here A(W) are
forms on M with coefficients in W. Now the "structure
sheaf" of W consists of the smeoth germs with values
in GL(w), w=dim W. Again, as in sections 8,13, W
will be called an invariant vector bundle if this sheaf
GL(w)S can be reduced to GL(W)D, the subsheaf of
germs constant on leaves. We put a bigradiation in
the manner of section 14 now and thus 3 splits up
into three derivations 301.310.32_1. Then W is

invariant if and only if one has a connection for

EDEEQL&gl_EnQ- Sueh a connection will be called a
Bott connection. Note that one can now define El(w),
the homology of A(W) under 35y Also if W2 is the
natural w2 dimensional bundle associated to W, (p.3i),
we can define the group El(wzj. For each

g € HI(M.GL(W)D) we shall also define the notions

£=Bott connection (resp. g-invariant connection) by
requiring that the local connection matrices of 1-
forms (with respect to trivializations of W agreeing
with g) consist of transverse (resp. transverse
invariant) i1-forms. Any vector bundle W associated
to g admits a g§-Bott connection, but it need not admit

an g-invariant connection. Note that our definition

" of Bott connection merely says that the curvature forn

{which is a 2 form with coeffs in Nz) is of filtration
= 1. If we satisfy "filtration > 2" we shall say that
it is an invariant connection. Finally, we call a
bundle which admits an g-invariant connection as a
stiff bundle. Starting with any Bott connsction one
can define an element [31,1] of Ei’l(wz) by using the
part of the curvature which is of bidegree 1,1. 1In
complete analogy with Atiyah [17] it will be seen that
W_is stiff if and only if r“1,11—f-—-

‘Section 19B is devoted to examining the Weil




homomorphisms, and is basically a dual of section 19A.
Let G be a lie group. (For simplicity we think of G
as a matrix group.) By a G-alzebra we meana graded
anticonmutative algebra (over some commutative ring)
which is provided with (a) a differential d, (b) for
each left invariant vector field x on G & skew
derivation i, of degree -1 and (¢) a derivation Ly of
degree zero such that ii =0, I.[x._.‘.] = [LyeLyl.

Stx,v] = [LgiLyls i,d + @iy = L. For example the
dell Alecbra W(G) of G is 2 G-algebra--see [6]. an-
other example arises from A(P), the deRham complex of
a principal G-bundle P over M. In this case each
left invariant vector field X gives us ina natural
way a vector field--also called X=--along the fibres
and ix"‘x are defined to be the usual inner product
and Lie differentiation respectively. We can define
& connection to be a Ge-algebra morphism of W(G) into
some other algebra. There always exist such morphismg
W(G) =A(P)}s+ this definition is known to be same as
for saction 194 for G = GL{w). P inherits from M a
codimencion ¢ foliation: so0 A(P) iz a filtered com=
plex. W(G) is alsc a filtered complex if we sat
wi(GJ a3 all those terms containing polynomials of
degres > 211 this is called the 1-filtration of W(G):
whon we are considering w(3) with this filtration we'll

11

write (1) #(C). Then we will see that A rincipal G-

bundle is invariant if and only if there is a gonnaction

(1) wig) -5-15;2! preserving ths filtrations. Of course

"invariant" means, as before, that we cen reduce tha

structure sheaf C’S to ED. {This result is sizply the
dual of the first in the above paragraph: in this new
setting these are the Bott Connecticns.] PFor each g

€ HlirhGDJ--i-l!-. each "invariance isomorphisa claas"
E==one has a family of E-Bott connections £{2)i(1)W(C) =+
A(P) which are associated to £ [They arise in the proof
of above proposition]. We show that any 2 such con-
nections f(g), g(g) are i-homotopic (in the sense of
seotion 9). Thus to gach £ ¢ H]' MG there is

asgociated a l-hometopy elass (£(e) 1 (1IW(3) +4(P) of

Bott copnections. This implies that, for r » 1, the

induced maps (LJEI.(GJ -Er{.'P} depend only on £1 we can
denote it by §. Then dualising a result of section 194

we can state that, an invarisnt bundle £ ¢ }{l{:-i.c:.ll is

Siff IfF the mao T(NE{'M(6) 421t (R) s sero. we

now define the 2-filtration of W(G) by putting
(z)wai_i = tz“ai = “)wi‘ Then we can deduca thati

A principle G-bundle is stiff if and enly if we have =
connection (2)W(3) 5’9:«{?1 preserving the filtration.

[These are what were in section 19A the invariant

12’



connections. Note that a Bott connection is simply one
in which the curvature is of filtration » 1, while an
invariant connec¢tion is one in which it is of filtration
> 2]. For each g€ ﬁl(M,GD) one has a family of &=
invariant connections f£(g). We show that any 2 of them

1
are 2-homotopic (section 9). Thus to each EEH gM,QDL

there is associated a 2-homotop olass [£() T {2)W(G)

+ 4(P) of invariant connectiong. In particular, for

r > 2, the induced map (Z)EF(G) *Er(P) depends only on
g€: we can denote it by ?. Note that for a point
foliation, GD = GS‘ and for each differentiable struc-
ture 8 € Hl(?fGS). one has the well-known map A
(2)E;'0(G),§; E;’D(Pf) = H*(i,R) called the Chern-Weil
homomorphismi here Py means P considered with the

. . p
foliation arising from the fibration P —>il.

In section 20 we study some aspects of linear
connections that are relevant to our study--and find
use in section 21l--we follow standard terminology. as
in [17]. A linear connection is any connection on the
principal tangent bundle (and so on its associated
vector bundles, T, T* etc.). Given any pair (M,D),
i.e., a{manifold, plans field) one says that a line?r
connection is a Walker Connection--see 371, [38]--if

N Y
it is torsionless and reducible to D° (i.e., keeps the

plane field D parallel). Then a w

r connection

exists if and only if D is involutive. With section 19

in mind it is natural to say that a linear connection
which reduces to D* (an invariant bundle) is a Bott
gonnegtion if it restricts to such a connection on D*.

Every Walker connection is a Botit connscticn. This

section points out that foliated manifolds may be

studied in the context of torsionless C-structures:

however I have not pursued this aspect in this work.

Section 21 is occupied with constructing 2-

perametrices (see section 17 above) for foliated

principal bundles. Special hypotheses are needed for
these constructions. E.g., the hypothesis made in
section 21a is that--in the terminology of section 20--

the foliation arises from a torsionless £4(1,m)-struc-
7

ture. Here g(l,m) is the Lie algebra of all

endomorphisms of gm with image in gl. Let Q denote
the principal bundle of compatible frames, provided
with the natural codimension c¢ foliation. Then we

employ the canonical varallelism of 0 by such a

torsionless connection (assumed comvplete) to construct

a 2 parametrix on Q a la section 17. In section 21b
we assume that D* is stiff: then we can have a Walker

connection whose restriction to D* is an invariant

i "
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connsction (i.e., filtration of curvature > 2: see
section 19) a linear connection with the latter
property can be called an invariant connection. Let P
denote the principal bundle of tangent frames compatible
with the foliate structure. Then ws employ the
canonieal parallelism of P by such an invariant tor-
sionless econnection (assumed complete) to construct a

2-parametrix for P. In this result P is net foliated
in w dimension ¢. Irstead we show that there is always

a natural 1+ 1m dimensional foliation of P sittinz abovae

the foliation of M. This is the foliation that occurs
in the above result. In section 2le we use averaging
process (over a Haar measure) to get a 2-parametrix
for the subcomplex hg of forms which are right
invariant over G.
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1. Let I be a smooth compact m dimensional manifold.
We shall denote its tangent bundle by T. The dual
cotangent bundle is T*. By p-forms we shall understand
smooth sections of APT*, the bundle of p-covectors; the
space of all p forms is dencted by AP, and the space
of all forms by A. Let us now assume given, cnce and
for all, a subbundle D=T of fibre dimension 1 and
codimension cj 50 1+ ¢ = m. We now define a filtration
of A,

AS A DAy D eee DA, D0 (1)
in the following way: we think of a p-formw as a
multi-linear skewsymmetric form on p tangent vector
fields, u(xl.....xp), which commutes with the action of
C™(M) s deeey (X ppesesfhypennsXp) = fulXyameesXp).
The values of this form are in c”(M) . Ve .now say that
AE consists of all those p-forms which vanish at x €M
whenever p-1i+ 1 of the vector fields Xl.Xz,....KP
lie in D at x. If i > c+1 it is seen that A} = o,
We shall understand by Ay the space of forms 1lying in
A_?.L’ for some p. If 1 <0, A; =4 and if 1 > e+ 1, 4;=0.
Ancther way of looking at this filtration is this. We
have an isomorphism AP7* = (WPr)*; at x e, an elt..
in the latter bundle is a linear map ApTx + R. By

putting the requirement that this linear map vanish

i7

on Vl A oaee N VP whenaver p- i+ 1 of the vectors are
in D we get a subbundle AE’I‘”. The space of all
sections of this subdundle is Aﬁ. We also have the
bundle A;T% formed from the whitney sum{;) apr®.

The space of all sections of this is Aje

2. Now we assume that the subbundle D is invelutive,
i.e., if two tangent vector fields X and Y take their
values in D so does their Lie bracket [X,Y]. In the
real vector space A we have the exterior derivative,
d:p -~ A which is given by the following formula {(thinking
of forms as skewsymmetric multilinear maps C™(T) X «..
% C®(T) +¢®(N) as above explained).
RN A X, = L s N ST
+ — w([xi,xjj,xo....,Ri,...,%j,....xr)}(zj
Though the notion of d goes back at least te E. Cartan,
the intrinsic definition (2) was given first by
Palais [22].
Provosition 1. D 1is involutive if and only if
the Vfil'cration (1) commutes with the endomorphism d,
i.e., d“‘i) < Ay for all i.
Proof: If D is involutive we easily see that if
(r+1)-i+1 of the vectors xo,Xl'.r....xz_ are in D then

r=1i+1 of the vectors xo,...,ii,....xr and




[xi.xj].xo.....il.....i_-l.....xr are also in D. 5o we
see that if mﬁ;\; then dy A;ﬂ by using formula (2).
Conversely let's simply suppess that d{;\}) = Af and
take any mE.\%» It is a i-form which vanishas on D.
Using formula (2) wa have

(@) (x,) = 3{x(u(®)) - *(0x)) - wifx.2D }
Pick X and Y to be two tangent vector fields with
values in D. So this becomes simply

(dw) (%,¥) = —ba([x,¥])

But dw € J\f- So it vanishes if both vectors are in D.
Hence we get w([X.Y]) = 01 this being true for all 1-
forms o vanishing on D. It implies that [X,Y] itself

takes its values in D, i.e., D 1s involutive. QED

3. From now on we shall suppose that D is involutive,
i.e., that the filtration (1) commutes with the endo-

merphism d. This is the setting in which & hemologiecal

algebra can be used to obtain information about H(a); an

algebraical machinery called the gpectral seguence is
avallable which allows us to obtain infermation about
H{a) from the fact that the filtration commutas with
d, i.e., from invelutivity of D. The following
definitions are adapted from Cartan and Eilenberg [7],

henceforth abbreviated as CE.

In the following H will denots the homologies
induced by d. In some other dlffercuf.ial & enters the
pleture we will usa the notation llét ). #lso in the
follawing we'll freguently use the triangle lemama
(CE, p. 316) which says that if (in the Tigura shown),
the bottom row is exact then %g. = Il

g

A el

A — A = v
o' n

Sinee our filtration is compatible with d, we
have an induced filtration :
HA) o () = o0 2 Hy(A) 2 0 (3
0f the homology of 4, where Bi(a) = Im (Hlag) +H(a) 1,
the homorphism inside the bracket being induced by the

inelusion A; = 4. The 2 filtrationg (1

And Al s
and J EiVe

e

rise to the associated quotients Eé . and
hipy
i Hy(4)
E.= w And furthermore for each r > 1 we put

4l Ay
2 ker {d(ﬂ_;i) - }1(\-—;)} -
TR A
Im {h(%iil) + H(‘—\-l—:;)}

where the 2 morphlsms are the connecting homcmarphi‘sms

in the exact homology sequences ariéi.ng from the exact

e i 2

a7 e e ' 4




sequences

A A A
[ Aili -+ K‘-‘L 3l i a0
ivr i+r irl
A
Rl Ol b 9 - Aiares | ;E*l -0 respactively
Air1 et i

The numerator and denominator in (4) shall be denoted
zl and B; respectively. One notes that Bi = Ziz for
any rj.Tyi that the spaces B, are inereasing with

r while the spaces zi are decreasing withr . If T
is bigger than or equal to elther of the two numbers
i+1 and e-i+1 (or briefly, if r is big) then these 2

spaces stabilize and (4) reads
m {1ty + 4}
HEE R T AT | 2 1
IS
In {1—:(:‘;-) - H("‘i.:i)}

A
(To see this read numerator of {4) as Im {u(izi~)
r

& 5 . Ay
7 0
# H(R‘;i':)}l take r big mow). Sioce O = Ay T gy

4 —b— 5 0 is exact, this coilncides with
Ai+1
Im {H(Ai} - H(If:;)' This in turn coincides with
H
I {{Hugh {a)) s Leea, Bl . S0 we see that if r is
To (Hlhy,q) = BGA) ) -

big Er = E,» This property is called the gonvers -3
of the spectral sequence.
in addition our vector space p iz graded by the

degree of forms. And we have an induced filtration

HP(A) > HE(A) = c.. 2 BE(W) 2 0 (34}
for each p, whave Hi(a) = Im (HP{ag) ~#P(a) 1.
Similarly for each p we have the filtratien

APo4Psisals0 (1Y)

Associnted to these 2 _sets of fibrations are the

5 o 2 >
quotients =3*Pt = S~ and glePml _ HIG) L apg
M1 HE, ) (a)

for each r 2 1 we have
) ~ (i)}

A
foy TP {#P(2
- i el
gheel o AT .1+Al ()

1 {(HEESL) L Pl

Once more, we polnt out that the vector spaces E?'q

irl

owa thelir existence to the involutivity of D.

4. One knows from deRham's theorem that H(a) is just
H*(,8), the real ecohomolegy of the manifold, which is

a topological invariant., We see thus that

HP(1,R) = ghed
R s @ 3l )

The whole idea of the speetral sequence is to find the

o, s o ¥
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interplay between E_, and E_ for low r. For thias pur-
pose more algebra is intreduced. As explained below,
in each E. & differential d, of degree r is introduced
(i.0., ¢ = 0 and a (81 =B;™") and 1t is shown that
H(Et) = Eppqe Many times this statement itself--guite
independent of the nature of the differentials dr--
suffices to caleulate some of the groups entering lnteo
the spectral sequence. For example, let us consider
Reeb's [25] follation of s3, when E:;"j can be non-zero
only if 0<i<l and 0£§<2. From {5) we see That
1-;:*0 = 5;'2 = R and the other Ei'j = 0. Suppesing we
have seen that E0'0 = 3 (Section (6) belew). Then
dllsg'o - Si‘n must be the null map and we must have
Ei'o = 0.

5. To wind up the algebraic machinery of the spectral
sequence we recall the definition of d.. For this one
sees, using the exactness of

A
Ay oM M {0

o - * A
Aiprwl  higl Biarst

that - n A
2k - {H(ﬁ) - H(ﬁ;)}
<X - F A o
Irel  Im {H(xﬁ"; ! H(ﬁi‘;)}

goincides with

Ay Aar
Im{H{—-) + #[—*-)}, Using a sinilar ergument
{ (AiﬂrJ k*‘A.\*rﬂ.)‘} Lpr =
this in turn coineides with —5:_"—1. Hence these two
r

spaces are isomorphic (With r, zi docreases a3 fast as
is
Br # increases). The differential dr is defined asz the

following composition
z: i _B i+r z i+r

i r r = _r+t B sitr
Ep = ;f G ;i' BT - B{+r = en (&)
r o+l i o r

As we saw in 3) for r big 21% = Ziul 50 then this is

& zere endomorphism. IE is clear from (&) that
i isr Z j-p A,
Ker {dr'zx' +E°) is ;;“_LL and im [E; T T Ei} is

r
B y
F_- Hence we see that ker .-zr = Im d., That is to say

L
r

. i
2 Ker d B
dy. = 0. Dividing we ses that Fd_r equals —?’—1 s Lie.,
r Z
i . r+1
5“_1. This shows that Hdr(Er) equals Enl‘

6. We shall now evaluate the Ey term of the spectral
Sequence. For this purpose we introduce the notien

of invariant transverse forms. Odiven any subbundle

D of T, the tangent bundle, a form wé 4 05 called

transverse if 1,0 = 0 for any X€D. Here i, is the

interior product (scc eqn. (13) balow). A foram is




called invariant if Loy = 0 for any X€CT(D). When

D is involutive, we can (by Frobenius Theorem) find
local coordinates Xy XgeeresXyl Xy geeeea¥y such that
the leaves are given by assigning some constant values
to the last ¢ of these. In terms of these local

ecoordinates an invariant transverse p form will appeaxr

as § I _(x Ve Jdx. A dx. A .a. A dx  where
& 1+1° et ay @n L

l+l=<a < ee SapEM " One notes that the coeffs.
f“ are constant on each leaf, When we change
coordinates to another compatible system of same type
the transformation matrix thus consists of functions
whieh are constant on leaves.

Mow we define D to be the vector space of all
invariant transverse r-forms. The corresponding sheaf
of germs of such focus will be dencted by p_r. In
particular I_)_o. or just D, is the sheaf of germs of
funetions which are smooth and constant on leaves. AS
wsuzl if a sheaf S sits over our manifold M, H"(M,S)
shall denote the aoch cohomology of M with coefficients
in the sheaf 5.

We remark fl.,n passing that the transversa
invariant forms are those which remain parallel aléng

leaves with respect to any Boit connection on the

bundle of transverse forms {see defn. of Bett connsc-
tions in section 19). Also we will notica BE W
proceed further that functlons which are constant on
leaves play a part as important for foliated manifolds
a5 that of analytie functions in complex menifolds.

The following propesition gives the firat
term of the spectral sequenca.

Ergposition 2. EJ'? is isomorphic to H(m,DP).
The next section deals with the proof of this proposi-
tion., WNote that the Reeb follation of 33 and mors
generally the foliatiens of g@dd given by Lawsen [20],
Tamura [ 36] are such that any global smooth funstion
which ia conssant on leaves ig simply a constant. XIn
other words E'® = #O(,D) = & for such follations.
Note that by 'thickening' the compact leaves one can
destroy this property.
2. Proof of Propesition 2i We recell that £P*9
- f-gi We n id ;

Ag:% . ow construct a _sheafc‘,’o' in the following
way. We take the presheaf which assigns to cach open
set U of M the vector space ag‘q(U). 1f U = ¥V we have
natural restriction maps A;""l(\() - J\g*q(u) which yisld
homomorphisms Eg'q{‘n -+ sg'q(u}. 53'“- is taken to be

28
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the sheaf .deternim:d by this presheaf. If U has local
coordinates, xl,xa,...,xc.yl,.-..yc we may represent
the stalk at x by expressions of the type

w (x,y)dx A oeee NodX A dy, A sss Ady, » It
a B @y L By Bp

is understood that for the multi-indices e and B we

have @y < ses < @, 80 By < 4ev < ﬂp| In this local

1 q
representation the zeroth differential

dgER* W) + EFF11(V) is given by

(7]

w . A aes nodx Aod A ses A d
a, 1 u.s(“ y}dxal oy 3'51 “ee yap]
\

1w (%) '
a F—2B T dx Adx, Aa.eendx, Ad
|c§1 3xy Kt ey &g 8y

sea A de (7
?

And so we also have a parallal sheaf homomorphism
dg1E8e +£P"1 9. Using this we construct the Tol-
lowing seguence
0 +pP =&l fEEg'lfS ver 2 EPP P a0 ()
Note that Eg'o is simply the sheaf of germs of smooth
p-forms which vanish where one of ths vectors is 1n D.
This explains the first inclusion. We prove now that
this sequence (8) is exact. An element of DP is given
locally by sum of terms of the type mB‘”d“”ﬂl Aass
A dpr. It is clear that do will kill it. Conversely

an element ui'fop'o is sum of terms of the type
wa{x,y}dysl.r\ i m\c:,;qrB and it is clear from (7) that
dy will kill such & sum only if each Wy is a function
of y alens. This shows exactness at first place.
Since dg ig zero in U by (7). to show exactness at
othar pleces, we assume that

d.{ T @ (x,¥)dx, Aeeendx, Ady, A.eendy, }] =0
Da_'s B L2 aq By ﬁp

which can happen only if

4. (2w, (X,y)dx_  A...Adx_ ] w0
o's Ca,pt™? 2y oy

for sach multi-index p. Using Poincare‘'s lemma for

each ¥ one can find a q-1 form X 8 (Xa¥)EX, A ens
r Y+ Y1

A dKYq—l such that
a.{Z e (X,¥)dx, Neeend 1
0ty Frapt Yy i

= %@ (xX,¥)dx, Ase.ndx, o ) [§]
z ob *E iy

The construction of these functions ehg{x,yj——saa.
B.Z.y Sternbarg [}4]--cnly involves integrating the
smooth funetions w

[- X}
X. So these functions can be chosen to be smooth in

(x,¥) and their derivatives over

both x and y. Since we have

n
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d T o6, oixe¥) A swe hdx, Adx, Asaand
O{Y-B vop Y Sy Yq-1 Py xﬁp}

= tw x dX_ A.s-ndX  Adx Ase. Adx
nr.z.a a..ﬂ( ') ay e By B

P
by using (9) and (7?) it follows that the sheaf sequence
{8) ias exact. Note that Eg'q arises alsoc as the sheaf
of ge.ms of smooth cross-sections of a vector bundle.
So it is fina, i.e., any local cross-section orgg"l
can be extended globally. Again for the came reason
the space of smooth sections of‘E:’q is preclsely Eg'q.
These two facts, the fine sheaf resoclutien (8), and
standard sheaf theory--sce e.g., Hirzebruch--now imply
that the cech cohomolegy HZ(M,DP) ecoincides with the
homology of the complex

f0 Jo, 53+t do, 8732 4 ... 4 ED'™P, wnich ie

precisely By QED

8. We shall now show how the chern classes of certain
line bundles vanish in HZ(M,_L!J. In a subsequent
sectlon this leads to a generalized Bott vanishing
theoram. We have to introduce some notationsz. e
denote by _C_s the sheaf over M of smooth complex valued
function germs; and by Ep the subsheaf made up of
those germs which are constant on leaves. Similarly

o

ool and ;_:'D denote the (multiplicative) sheaves of

nen-zero complex smooth germs and those which are
constant on leaves. We have now the twe exact sheal
E8QUENCES

-

. -0

2mi( )
3_) o

042 =g
(10}

e2mi( )
and 0 +Z 4oy — gy o0

where the first maps denote inclusions of the constant
sheaf Z. Noie also that only the sheaf Cg is fine in
(10). ZElements of i{l(M.g;J are called (equivalence
elagses of) smooth complex line bundles. See
Hirzebruch [15] for the motivation for this
terminology. By invariant line bundles we shall under=
stand those lying in Im (K'(,g5) - HL(,g5)] where
the morphism is induced by the inclusien £} = Q; « The
first chern class o4(%) is defined for each line
bundle §¢ H'(M,C}) as an element of HZ(i,z) in the
following way. The first of the sequences (10} gives
us a long exact cohomology sequence, some of whese
terms are

ety o+ BMLED) - 62 -+ KROLEg) -
The two groups at the ends are zero, as the sheaf gs
is fine. The connecting isomorphism in the center is

called cl(-]. If 5 is any sheal containing Z, by the




first chern class in S, we will underatand the composi-
tion of the above morphism with the map i(a(r&.z_.) -Hzthd.s_}
induced by the inclusion Z+35. For example to get real
chern class one takes 5 = R.

Propositien 3. The first chern class of an
invariant complex line bundle vanishes in D.
Proof: We look at the following diagram:

we,eD) 1Y) W) o« KD
T . v (11)
ey &, HEonz) » xRugy)
whera & is the connecting homomorphism in the exact
seguence induced by the second sequence in {10). The
unnamed maps arise from inclusion. This diagram
obviously commutes. The bottom row is zero due to
axactness, So the proposition is proved if we can see
that }{Z{M,g) -+ Hztm.gn) iz a monomorphism. Take a
gufficiently small open cover U of M. Suppose that
we have a l-cochain g, U.t“ Uj g_j.‘.j G, on it whose co-
boundary is h, Uy 0 Uy 0 Uy hﬁlk Rs where g5 40 hygp
are smooth and constant on leaves. So we have
hijk = gij + gm * By Since ‘h:ij is real we alsov
have hijk = Rng“ + Regjk + Regyg showing that the
cochain Reg, Uy 0 Uy ReEij R alse has h as coboundary.
QED

#e can complement the zbove propesition by
ineluding the converse statement, which follows
immediately from the exactness of bottom row in (11},

Provosition %. The first chern class of &
smeoth complex line bundle vanighes in D i and only
if it is invariant.

In fhis form this proposition should be
compared with a theorem of Lefschotz, Hedge, Kodaira,
Spencer and Dolbeault--Thm. 15.9.1. in Hirzebruche-
which characterizes complex analytic line bundles over
a complex manifold.

We have, as in (5), that Hi(M.z) = 502
+ Ei"‘ + Ez'n. In this decomposition, proposition 3
implies that the first real chern class of an invariant
line bundle does not lis in 22.2. Equivalently if one
locks at the diagram

" #E(p)
Hhu,gf) W) - 2 (n)
1 I # in

-

" )
wrongh L g « o + o) =£3"% (12)

2
where the inclusion i results since Eg'z = ELELAJ is
HE(A)

by successively taking the kernel -

gotten from 2?'2

under the differentials dl'd2'dj"" of section 5; then
propositlon 3 shows that the bottom row evaluates to

32



zerg. The commutavity of the rectangle thus shows

that if ¢ is invariant cl(g) projects to zero under the
natural map H3(A) - %Al In other words ¢, (£) € Hfm)
HI(A)

We record this as a Corollary §. If & is invariant
clﬁ E) € H?(A). S50 it can be represented by a closed
Torm €4;. The ¢onverse statement is also true.

We remark that the rectangle in (12) commutes
for the follewing remsons the map HZ(AJ -+ 52’2 in
this rectangle arises from the projection map

{a,d) = (:f-.d.o). These 2 complexes provide resolutions
1
of the two sheaves R and D which commute with the

ineclusion k = D

R ey d* ' Do F e
Do T O b
D E7H E S

9. 1In this section the question of homectopy invariance
of the spectral sequence shall be posed and solved.
Suppose that My E,Hh is a smooth map between two
foliated manifolds which takes leaves into leavesj or,
to be precise is such that the induced map T, _iT-b

satisfias r{DaJ = Db' One now has another induced -

BE&P Ap E"\a which is a vector space homomorphism

present-lng the filtrations. Thus we have induced

33

homomorphiam ‘Er.tl “j';ﬁz-.a s eomauting with the dir.
ferentials dr (see Cartan and Ellenberg), Suppose we
have tweo homcmorp.‘niamz i".gu\,b -+ Ay and we can fingd a
chaln homotopy betwesn them. =15, + =
daa + 8dy, = g - gy then the two i:duc:: m::: -
r,gu}i(;\b) -+ H(na) are identical, And the induced
maps f-E'Er,:': - Br.a are the same if r is big enough
(section 3}« Let us now PUT on the chain hamotopy the
additional réqulrement that s{a ) = I
i.e., that the homntopy di'turbi.b _‘1"‘{'& Bk
¥.3 8 the filtratien ty at
most ¥ units, then one ¢an see from CE, P« 321, that
for r > k, the 2 induced maps £,24E
identical,

ryb " Ep g are

Now t
he product Max I can be foliated in two
natural ways. we'll say that it is i-foliated if its
leaves are gotten by 2ultiplying the leaves of i by I
ta .
And, we'll say that it iz 2-foliated if ita leaves are
ust ;
J 1 (lear of Ma. {t}}). S0 in the first case the
¢odimension ig unchanged, while in the second cage
the dimension is unchanged.
We say that 2 I
- maps r.gma “* Ny, which map leaves
¢ leaves are k-homoto ie (k = 1,2) if we can find a
D an fir
smoct :
h map StM, xI My, which takes the k-leaves into
leaves, with 8 = £ and 8, =&,




Proposition 6. If Logebly + My, are k-homotopie
(in the above sense) one can find a chain homotopy for
which “{"‘i.a" S Ajogel,pt (Such an s is called a
kechain homotomy) (k = 1,2).

As polnted out above thiz will have ths fol-
lowing consequence.

Gorollary 7. The spectral sequence is a k-homotopy
invariant from the Ex term enwards (k = 1,2).

One recalls that the spoctral sequence of a
fivering is stable from the Ez term on. The notion of
fibre homotopy coincides with the 'notion of 2-
homotopy which has been intreduced above. The next
section deals with the proof of propesition €., It
invelves a construction which will be helpful subse=

quently in bullding up a parametrix for d.

10. Proof of propesition 6: Given a vector field X
on the manifold, one has a skew-derivation lx”‘ - A
of degree =1 called the interior product with respect
to X. We recall--iebayashi and Nomizu L17]s pe 35-=
that if y is an r-form the definition of 'i'x is

() (Ygaeen¥ ) = LE{CO% PRSP (13)
The property of the interior product needed to construct

& chain homotopy is
Ly=di +i4 (14)

Now turning to the two given maps ity + By and their
hometopy S:rn'.a xI + Mb we have ths induced norphisms
r,gu\b w and Sthy = A(I\[a x I) each preserving the
filtration. Let us now take the vector fisld to ba

the 1ift of the standard vector field g—:- en It Xisa
vector field in M, xI. Let us define the morphisa
AlMg x1) 3 A(M, xI) by the formula (13). From this
formula, and the faet that, g 1 carries the k-
foliation it follows that this map disturbs filtration
by k-1 units only. Now we define one more hemomorphism
Al xI) - 4(i,) in the fellowing way. Lot E

Mgy = M, xI by the map X + (x,t). Then _]‘:w-_[zu:m)at.

Pinally we define a chain homotopy sip = 5 to be the

following composition
1

i
Ap S A0, xT) ¥ A, x1) 30 ACx,) (15)
It is clear that this map disturbs the filtration bty
k-1 units, and iz of degree -1. The formula
de + 8d = g - [ follows by integrating (14).
- aft 1 =i Pags 5 Mg
ds + sd djolxs + foixsd j'équ + _ro‘xu:.

as d commutes with the induced map £ and with P
4]

which was defined by the induced maps if . So
ds + ad:I;LxS-:SI =S,=g-1

T -y T

26



ag X was the 1ift of the vector g? en L. QED

11. We now study the behaviour of the exterior product

with respect to our filtration. Let us suppose that
WEAE and nEAg. Then the p+ q ferm ¢ A ¢ is definsd

by
(A O) (Ko Xgadgrenaakp, )

— TV %‘E{ﬂlt\][x"{,’]!-"nx“tp))

ftxn(bﬂ}""'xn({pn-q)] (16)

where 7w is a permutatlion of the set {1,2,...,p+q} and

e(m) denotes the parity of the same. Now suppose that
P+q=1=J+1 of the vecstors xl.xz,...,xlﬂ_q lie in D.
This implies that whenever = p-i of the veectors
x““)....,xﬂp} are in D, = ¢~ j+ 1 of the vectora
x“(pu).....xniwq, are in D. Hence one of the two
factors in each term of (16) is always zero. Thus
wADgE J\f:?- The product above defined is related to
the exterior derivative in the following well known
way

dlw A o) =dyAag+ (-1)Fy A dn (17)
This fact is expressed by saying that d is a skew

derivation. From this fact it follows that a product,

the "oup' product, is induced in H(A) 1 this product
obeys the well known anticommutavity rule
If a€HP(a), ve HYA), then abe HPM(y)
and ab = (I-lquba

Propogition 8., If ac Hi(“ and hEHjﬂ.\].
then abe¢ H.’n-ju}' In particular, if i+ j> e, the

(18)

codimension of the foliation, ab = 0.
Proof: Immediately follows from definitions.
8¢ Hi{a) means eeIn {H{A) - H(A)} and 8o a ean be
represented by a cleased form Wy €Ay Sinilarly we
have another closed form Wy €Ay which represents b.
Se ab is represented by the closed form Wy A wpe which
by above discussion lies in Ai+j' It represents also
a homology class in }i{x‘u‘_j) which is mapped to abd undar
the inclusion Ajpg A i.e., abe HH_J{A) QED

This propesitien puts stronz conditions on the
ring structure of He*(i,R); these will give "vanishing
theorems” (see balow), iote that we have thus a
multiplication induced 1n(1:§:e E, term of the spactral
Hela
i -
sequences If g € E, = Ti:,_;ﬁﬂ- has a representative
ac Hi(“ and similarly be .‘{j(,\) represents

Hy(a

3 i i+
= it E o ited By

BEE, H—j':l-(—}-.t en af € E.7Y le represented by

abeg H‘“_j(,fu. It is clear that the colice of representa-

tives is irrelevant. We shall denots this induced
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product in E_ by e A B also. Note that one may very
well have non-zero elts. a&b in Hy(a) and HJ(J\)
with ab # 0 and still have a A B = O for, ab could

Hy, glad
: ird o i
lie in hi+d+1u) and we have E Hi+j+1 T

But if i+ j>e, one can conclude that ab = 0 if

a AB=0inE_. Inan entirely analogous fashlon

the exterior product in A induces a produet in Eqy
which pairs Eé and Eg to Eé"j. The equation (7) leads
to the equation djlw A g) = Qyu A O + (=1)Fy o dgm

for mEEé'P"‘ and Usr:g'q"'j. We have w A g lying in
Bé*"‘]'p"q'i'j. Hence this preduct’ in turn will induce a
product in the homology of EO' viz., E!. and the dif-
ferential dl will be a skew derivation with respect to
this induced product. The above remark holdz at every
stager if i+ j>¢ then vanishing in E ., implies

vanishing in E..

12. As a Ifirst example of exploiting the above pro-
position, we shall study the signature of a foliated
4k dimensional oriented manifold M. We recall the
definition of the signature. The cup product provides
us with a bilinear symmetric (‘Dy {18}) guadratic form
on the vector space i{zx(hi,gj obtained by evaluating

the product of any 2 classes in sz'(:-l,g) on the

Lo

erienting Lk-cycle of the manifold. 3So if we denose

this form by #, Flx,y) = xy{M]. The signature of F

is ealled sign M and is a topologieal invariant.
Proposition 9. If ¢ is odd, and dim Hek {a)
o 2

> # dim H*"(A), then sign. M = 0, 2

Proofs Here [g-] denotas the first integer after %

We define the cone of F ag the subset of HZ°(M,H)

given by the condition r{x'.x) =0, It shall bas

dencted By y(F). Let us denote by p and g raespactively
the number of positive and negative values when P is
reduced--by changing bases--to a diagonal form. It is
well-known that .tha‘t p and g are independent of the
reduction process. And p-gq = sign M. By Polncare
duality we have p+q = dim Hzxt,\). as F is a non-
eingular quadratie form. Now we notice, by using

Proposition 5, that Hzf (o) © ¥(P)+« A4nd therefeore,
{51 i
since it is well known, that either of the 2 nos. p, q
is at least cqual to tha maximal dimension of subspace

in y(F), we gat the two inequalities p » dim HZY ana
3}

q > dim H?]é?. Using the given hy-pothcsis. it follows
7 E

that p > & dim H2E ana Q=% dim ¥, 5o it follows

that p = g = & dim Ho® and sign M = © QED

L



Some follationz obey a type of duality which
resembles that observed by Serre [30] in complex mani-
Tolds. We'll call this Serre duality. It states that
E:'b ™ Ei’n‘l'h. Using this and (5) we see that the
hypothesis of proposition & are satisfied.

Corollary 10, A 4k dimensional oriented manifeld
admits a foliation with odd codimenslon which satisfies
Serre duality, only if the signature vanishes.

It is known that fibered manifolds in which
the fundamental group of the base space acts trivially
on the cohomoleogy groups of ths Iibre obey Serre
duality. (See [8].) Serre duality undoubtedly holds
in other instances; but the work in this rogard is as

yet unfinished.

13. 1In this section we state and prove a generalized
Bott vanishing theorem. We recall--[15]--that H(,s)
iz defined, as a set with distinguished element, even
if 8 is a sheaf of nenabelian groups. The important
cases in this section are when 5 is either the sheaf
GS of smooth germs from M inte GL{n,C)} or else the
sheaf cn of such smooth germs which are constant on
leaves from M into GL(n,C). Ths elements of x‘(m,csj
are called smooth GL(n,C)-bundles over M. Note that

gilven a space Y and an action of GL(n,C) 00 Y, one can

L5

construct for each L€ H'(M,6.), & fibre bundle with
group G and fibre ¥ simply take an open cover U in
which a coeyls 513'”1 n Uj -+ G representing £ can be
found and use the 8;¢5 as coordinate transformations.
Of course G can be chosen as ancther Lis group, and
the definitions hold. If H < G then we have

HS < Gs and Hy = Gp and thas; sheaf inclusiona induce
morphisas K'(4,Hg) + K (1,0¢) and KOty = HLO,G)
eto. We shall denote bundles lying in

Im (s'(,cp) + H(M,65) ) by the name invariant G-

bunales. And we shall say that the group ef such a

bundle can be invariantly reduced if the bundle lies

in Im (n"(n‘.,HDJ + Hi(n,cs}}. We note in passing that

the group of a GiL(n,C) bundle on M can be always
reduced to U(n,C), but the group of an invariant
GL{n,C) bundle on M need not be invarisntly reducibla
to U(n,8). However for the bundle of tranaverse 1=

forms, the group can be invariantly reduced from

G6L(c,B) to Ole,k) if the manifold admits a bundle-like

metric. (The concept of a bundle-like metric for a
foliation is due to Relinhart [27)s It is a riemannian
wmetric for which thers exist coordinate systema such
that gij' for i, j > 1, iz constant on leaves.) we
shall however not introduce any metrics; and the only
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invariant redustion which we encounter shall happan in
a natural way soon. e remark again that the bundle
of transverse l-forms is invariant as we have local
trivialisations by invariant and transverse l-Ioras,
and the coordinate transformations of these are func-
tions “.t n Ui g—;"} GL(c,R) .which ara constant on
leaves. We recall--from Hirzebruch's book [15]-=how
characteristic classes can be defined using a theorem
of Borel's. For a given £ € }ilm.cn} one conatructs
an agsociated principal bundle, l.e«, take the fibre
as G and the action as left translation. We denote
this bundle by P = K. Hence we have an induced bundle
e € H"(p/ﬁ.cp}. Here we denote by Aln,C)--or just
p--the subgroup of GL(n,g) consisting of triangular
matrices (i.e., elementa below the diagonal vanish) .
Proposition 11. The group of p*g can be
invariantly reduced to f. )
Proof: If the word invarlant is dropped this is a
standard theorem from Steenrod [33]. Tha same proof
works even now. We have a canonically given bundle
with group and fiber p sitting over P/ Vi,
P + P/p. Obviously since the coordinate transforma~
+ions of P over i can be chosen constant on leaves,

so can those of this bundle (Note that P/p iz a

compact smocth manifold. The fibration P/a .E,L picks
the foliation of i up to a foliation of P/A. The
fiber of this fibration P/a Bt is precisely G/a, the
manifold of flags: each element of G/A is a sequence-
of subspaces 0 € E; = 3, © w0 & C" 02 ™). Let
neﬂi(lﬂfn.gu) ba associated to this bundle, then we
aggert that the induced map arising from 4p = Gf.b
gends n to p*E. The proof of this fact can be found
in Hirzevbruch [15].

Now we resume our definition of characteristic
olasses. For each K= 1,2,..., We have a map
A ‘ff €* which picks out the kth diagonal element of
the triangular matrix. It thus induces a map
H"(PA'_\,.AD) T;’f H]‘{M,QB) and corresponding to
pege HH(P/B.b,) we get k complex line bundles
@k 8) s a1l invariant, Then o¢ne can check, as in [15],
that p*f is continucusly iscmorphic to the whitney
sum ¢|1(;)e-) ee @ q:k(g). We remark that this is not
an lsomorphism as invariant bundles: however thie is
all we need. HNow one defines the chern class
elpre) € H¥V*™(P/p.2) by the formuls
slp*2) = oly, B elpytl . clpyl) employing the cup
products the chern class 1.1-01 of a line bundle
having been defined a'lrea:w in section 8. Pinally
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we appeal to tha theorem of Borel which says that the
projection piB/p = M induces & moncmorphisam
ProHt(M,E) -+ H*(P/A,Z) to pull this class to M. Thus
o(g) = p*“lo(p*g)-~the theorem of Borel also ensures
that c(p*e) lies in Imp*.

Proposition 12. Tha real chern ring of an
invariant GL(n,C) btundle over M vanishes in dimensions
> 2ec. ]

Proofs The fact that p*«M*(M,R) - H*(F/p,R) is &
monomerphism allews us to assume that the given in-
variant bundle E€ i{lﬂ\’..cﬂ) can be invariantly reduced
to A. So it iz the continuous '.\’h:itnay sum of
invariant line btundles € = £ + ... + £, ;ieﬁ"(u,gsj.
Using ecorollary 5 of section 8§ “1“1]' 3 Hf(.\}. Then we
use prop. 5 to conclude that an r-fold product of
these classes will vanish if r » ¢, This proves the
above theorem. QED

Kote that unlike Prop. 4 we used thnl fact that
A has a filtration of length ¢ in an essential way.
If one filters (for a continuous foliation) the
complex of singular cochains we are not sure that the
spsctral groups Si'j vanigh for 1 » ¢. 8o the abav::
result is wvalid only for smooth foliation, whereas the
vanishing theorem of prop. & is valid for topological

follations.

Bott [4] proved this thecrem, only for D*e1%,
and by a completely different way. This other zethod,
which uses the Chern-Weil map, fits in naturally with
our spectral sequence and shall be developed further
in seetion 15,

Of course, as Bott and Heitsch [5] have
pointed out, Theorem 2 breaks down for the integral
chern ring. The reason for the (real) Bott vanishing
theorem can be traced back To the second of the exact
sequences in (10), which gives us the exactness in tha
bottom row of (11).

We remark thet one can build up 2 K-theory for
invariant bundles; just as one has the X-ring of
c¢omplex analytic bundles.

14, 1In this section, we suppose that we have chosen a
complamantary subbundle N, i.e., D+ N =7, and 2
projaction maps Pl + T and P + T with images D and
N respectively., Then--following a paper of Cugenheim
and Spencer [13]--we define for each pair r,s such that
r+s=p, a bundle map 'nr'sup'r + AP as follows:

AE v AV A e A vy, 15 a p-covector write 1t dowa’

as (Ppvy + Fpvi) A wee A {PDVP + P'va) and pick only
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those terms in which Pi‘;v_i occurs r times and Ppvy

occurs & times. We now think of AP as (AP1)* and so
we have induced maps ﬂ;Ijmp + AP, The fixed points
of this endomorphism form a subspace which wa danote

by A¥'®. From the definition of Ege viz.,

PH
A
Eg’q = —%;E‘ it follows that we have an isomorphism
Pl
Bg's = Az',s We have some more simple relations:

a2 @ A% am @ ATy = @ AT eta.
r+s LB J=i

Now cur filtration is preserved by the exterior-
derivative, d{a;) = ag. It follows that

a(a®4%) e A% & 4190 ang a(ale0 & 2001 4202

+ Az‘o + ;\0"2. Again the exterior product obviously
pairs A¥'® and 2%'® with AT*®5*%, Finally the endo-
morphism d is a skew derivation with respect to the
exterior produst. "It follows from these remarks that
in the bigraded module A = @ A"*?, d can de thought
of as the sum of three endu;:::pnis:ns “0.1’“1,0 and
dz._i of degrees (0,1), (1,0) and (2,-1) respectively.
Now the equation d = 0 can be written

(ﬁo'l +dy ot dz'_llz = 0, Equating terms of the
same bidegree to zero we get df.a!l = dfa - dg.-l =
= 99,1%,0 * %,0%,1 T %4,0%,-1 * %2,1%0

- dz.-1do.1 + doldz,-j. = 0. In other words d becomes

L5

the sum of three endomerphisms, each of order 2, and
any twa of these commute up to sizn.
Proposition 13. dz,_l =0 if and omly if j
is involutive.
Froof: Follows immediately from Propesition 1 applied
o the filiration gotten from N in place of D. QED
Using this bigrading we can algebrajcally
h A i
characterize Ll and 52' The endomorphism d'o,; of
order 2 acting on the above bigraded space @ 57'3 Eives
us its h I
& homelogy which we danote by :{0_1(;\]. Again since
dl'o anticommutes with “o.:. it induces a differential
en this T i
is new bizraded spane@ho.f(;\) of degree (1,0).
If we take homology with respeet toe thig differential
+ H
we get a new bigraded space "1.0“0,1(“) » Similarly
We have yet another bigraded i
! graded space K, _yH oHp,s ().
roposition 14. We have 21 = “0.1(“ and
Ep = Hy oHy 4 ().
Proof: The proof follows that in Cartan and Eilenberg
P+ 330. The zeroth differential in our spectral
sequence, dosaé'p'j' + sé'p'lﬂ, f.e., "‘)': "gﬂ

P
R TSR iy

is the map induced from d, and so was the dy , above

ol N
50 they coinclde and we get E. = .
° & y = HO,].‘M‘ Now-wzeas
CE p. 319=~the first differential in our spsctral




sequencu.dllf,i"u-l - E;H"D-i can be seen to be the

sane as the conneciing homomorphisam induced by tha

Ay A Ay
following exact sequences 0 = - —= - 0.
bz biez Ay

{Nota, from (4'), that Ei'p-ﬂ' is same as HD(A‘::!. )}.
)

- ﬂp"lcl—*l)--giwn as we pass to homology under d,
i+2 x

A
How the connseting homomorphism Hp()\ii
+1

is obviously the same as the map induced by dl.o which
ia the part of d having degree 1,0 (as dz,-]_ would
take us to Ajpn and thus play no role in above con-
necting morphism). So it enableé us to identify d,
and d,, and see that E, iz same as Hi.O“D,!.(” + QED

It is however not trus that E; = M, _,H; oMy ,(ahe
the differential ﬂ3 of the spactral sequence is quite

different from the knight move.

15. The rather algebraical interpretation of the Ez
term, given by Prop. 1% is not altogether satisfactory.
A more geometric result is the following.

Proposition 18. The sheaf sequence

o+rer® &l w4 40 (19)
is exact. For each q » 0, we have the induced chain
complex

W00 &5 8ot & L - o5 (z0)

by

Under the isomorphisa of prop. 2 this cemplex is same
as

29 e, L Yo,
Thus the E, term can be thought of as the homology of
the seqn. (20).
Proofs First we demonstrate ths exactness. To do
this we employ the classical Poincare's lemma in the
following way: 2 lesal section of DP, i.c., & local
invariant transverse p~form (yp looks like

E va.-“l[:pfld.';-'°L1 Avae A dynp in coordimates X ,Kpssesdy,

Yyeeess¥, compatible with the follation, and d(y) is
Just aw ()

ZEslE—dy, AdY A vee Ady .

z k Vg S .V“p
Using the fact that in RP any closed form is exaet,
we are through.

For the second part we recall that the iso-
morphism of prop. 2 resulted from the fine sheas
resolutions occurring in the rows of the following
sign-commutative diagram of sheaves

i i,0 0,1 i1 1,1
0 +D q‘EO- -l 60’ +* seu 460' + 0

¢] 4 i 1,0 .

il £441,0 90,1 pdv1,1 . T gie1,1
SR "—yfo L EO '-b...-.go o




Here I think of the sheal ,fg'q 23 the sheaf of gernms

of forms in AP'? (s0e section 14 above)., Only the
commutavity of the first square could be non-obvioua.

It follows by noting that on invariant foras, d =0.

a
And since KtiaPrd 4 4Pr2ag-1 oo obvicusly zero r;:
9 =0, we see that a:nt 4 o1 50 gams as dl,O'p-i +
p**1 and 5o the Tirst sguare commutes.

Due to naturality, the second assertion fol-
lows froz this com=utative diagram, QED

In a well known special case, Serre [31] was
able to give a better description of the spaces Eg'q.
We shall now obtain his results. 50 we supposa that
our follation arises from & smooth fibration M s
with fiber F; here F and B are smooth manifolds, etec.
Before taking up the Zeneral case we note that the
case g = 0 is very easy.
Corollary 16. 1In this fibration cass 220 = WP(3,p).
Froofs Por g = 0, (20) is Just the chain complex of
sections arising from the differential sheat g". Now
the sheaf D' fa sioply the pull<back of the sheaf

‘(B} of i-forms on the base space. Hence (20) coin-

cides with the deRham camplex on B and the result
Tollows. QED

For the general case we define a sheaf H;(r)
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on B from the following pre-shaaf: to each open set U
of B we associate the vector space HUP™u,2), and
to each inclusien map W = U ths induced heomorphisa
}fq{p-lﬂ.gj - Hq-(p""i.r.ﬁj of ply e P M. Now we have
the cohomolozy of B with coefficients in thig sheaf,
vig., HF(B.I-.'g(F}). It is usual to call this as the
sohomelogy of B with local coefficients in KU(P). We
then have the following:

Proposition 17, In the fibration case
ERl & n’(s.i{gtp}).
Proofs We extend the construction above defined to the
entire sequence (19}, i.e., wa construct sheaves
H;(_QP} on B from the presheaves which attach to each
open set U of 3 the space nq(p"lu.gp) and to eash
dnclusion W = U the induced map H*(p" w,0P) « 13(p~ly,p?).
New the morphisms in the sequence (19) induce shea?
homomorphisus J-::(QFJ -+ 1[:(21“""_] + The resulting sheas
sequence
0. u:m + K27 + vee + 530% w0 _ (21)
is exact. Moreover each of the sheaves HS(Q‘) is
fine &s follows from noting that K(4,pl) is a module
over C™(B), the ring of functions constant on leaves.
Pinally the chain complex of sections arising from (21)
eoincides with (20). ©This proves the assertion. QED
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We shall not pursus this special case further
as it is well known and understood.
It should bs pointed ocut however that the
exact sheaf sequence (19) is the basic reason why one
uses spectral sequences to study foliated manifolds.
In the terminology of Swan [35] the "secondw spectral
Sequence of (19)--with resolution by forms--is precises
1y the spectral goquence being studied., One can
generalize this procedurs to Studying any structure
on M, which gives us frem the exact sequence
o R—pcd? L5 ' = ro
of sheaves another (semi-exact sequence) of subsheafs.
0-R -—bu{; = p{;i‘r-“ﬂdg"?°
In our case ¢ is the foliate structure and the subsheaf

é‘ i= g‘. the sheaf of transverse and i.mr.ﬁia.nt i-

Torms, and this sequence is the exact sequence (19),
(This general point of view can bs seen in Spencer's

WOrk==see, e.g., [32].)

16. Let M be any smooth manifold, not necessarily
compact, and suppose that we have a smooth vecter
bundle V Tpi; the space of smooth sectlons is dencted
By C¥(V). By a local trivialisation of this bundle .va
mean a diffeomorphism x of IT-I(T.F} with the trivial

bundle 0 x 2. (Here n 8™ is an open set = U and
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k is the fibre dimension). If we look at a section
£6C™(V) under this trivialisation we gat a map

g0 + B, whose ith coordinate shall be demoted by
g"i' 1<i<k. Ifqgs= {“1"‘2""'%} is a multi-
index we shall denote by .gé:’ the function n + B given

Jat
by 5 e g‘i. {Hera |q|= -"‘1 Ay oeee d “n"
VX
p i J"‘m

Now choose a compact set L in i and set ]51};-& L equal
'

to sup !gm?{x}l + Then this is a semi-norm eon
x€L,1gick’ %

the vector space C(V). (A funetion PV o+ [0,%) such
*hat plx + ) < plx) + p(y), p(ax) = & plx) is celled
a senl-nerm on the vector space V). Now we put on c®(v)
the weakest topology which makes all the semi-norms

I lx.a.L eontinuous. One ean in faet get this seme
topology by using only a countable number of these
semi-norms. (Take a countable number of co.npact sets
ecovering M with their interiors, each conpact set
lying in a U over whieh a trivialization iu Eiven).
Also, all the semi-norms vanish only on the zaro
section. Hence this vector space is metrizable. gSee
P- 24 of L. Schwartz [25]. We'll refer to this book
for all results on functional analyses.] In the

L
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Preceding sections we have come across a numbar of
vector spaces of this type. For example, A, AF. Eu.
E.g'q are all spaces of sections of sultable vector
tundles on M. These vector spaces, or for that matter
any other such space of sections, shall be assumed to
be topologized in the above manner.

Proposition 18, C™(V) is a Frechet space.
[A Frechet space is a complete metrizable space. By
complete we mean that every Cauchy sequence converges.
A sequence vy is called cauchy if p{vi-vjj - 0 as
14§ + w for each semi-norm p.]
Proofs We have already seen that its topology can
b of semi « The

be defined by a itable
completensss follows by noting that uniform limit of
continucous functions is continuous. QED
Corollary . A aPy ED.Eg‘q- are Frechet spaces.

We remark that A is a hausdorif locally convex
topological vector space--briefly, a HLCTVS--and, as
sueh the theery of compact opsrators applies to its

We recall that if E and P are 2 HICTVSes then
a linear map E + P is called gcompact if it is continu-
ous and maps some nelghborhood of zero onto a
relatively compact set (i.e., & set with compact

elosure). The following basic theorem is the culmination

of the efforts of Fredholn, Hilbert, Riesz and Schwarts
amengst others.

Propgsition 19. If E is a Hausderf? locally
convex topoleogical vecter space and S1E = E is compact
then the map 1 =8€ - E has a Tinite dimensional
kernel, a closed image, and a finite dimensional
cokernel .,

We refer the reader to Schwartz [29], Theorems
A=l, A-2 for even more Eeneral results. We shall necd
only the finiteness of eedimension,

The volume bundle o ~» M is the line bundle
assoclated to the tangent bundle by the representation
GL(m) + 8" given by 4 -+ |det Als It is clear that
sections of n are smooth measures on M. A4 smooth
kernel K--zee Atiyah and Bett, Lefschetz Pixed Pt.
Tormula [2]--assigns $mesThly to each point (x,y)
of M x M & linear transforcation u‘; -~ @ a,.

Thuz for a given x, K(x,y) (w(y) )19 a form at x times
@ measure, Integrating over ¥ we shall get a form
which we shall dencte by wa. This integration

is possible if X has a compact support in M x Wy or,
even if, for x fixed, the set {yl¥(x.¥) # 0} = I has
& compact closure., A lincar RAp Sypth <+ A which zu.:.i.saa

from a smooth kernel K in the fashion described is




called a smoothing mas. We will write
(s (x) = [ Keey (wtv)) (22)
¥

We note that the definition of smoothing map helds
even 1f we are working with an arbitrary vector
tundle V in place of AT". Thus one can talk of
smoothing maps <™(V) i’; ¢™(V). The right side of (22)
continues to make sense even if w is only continuocus in
y. Differentiation under the integral sign shows that
if K is still a smooth kernel, Syw shall be smooth in
%x. In_other words we have a natural extensicn
ey 2K 2wy of S, and S = 5,1 where i denotes the
inclusion map C“’(V]—rco(\f}.

We shall topologise the vector space CK(V)
of k-times continuously differentiable sections of
a vector bundle V -+ M by the :cmi—norms\-[x.c'z with
jal £K. It is apparent that if M is compact then the
topology is given by a finite number of such semi-
norms: we take a finite number of compact sets I‘j.
whose interiorscever M and a finite number of triviali-
zations X3 defined (resp.) on neighborhoods of I'}.‘
Thus the topology is also given by a norm
The space is clearly

e ll= I . o -
ik i, a gkl S vty

coaplete. Hence Gk(vJ has been topologised, for M

5T

compact, as a Banach space.

Proposition 20. If N is compact cl(\r}c-col:\f‘l
is compact.
Proof:s Take any bounded neighborhood of zero in CM(V).
As a subset of CP(V) it is equicontinuous and fibre-
wise bounded. So by Ascoli's theorem~-sou . Bafay
Schwartz; Th. 4-8--it has compact closure ia Go(\f‘J QED

This result shows that the inelusior &,
¢®(V)e+cP(v) is also compact, as it facters through the
above map. Hence we see that for M cnm.p.a\ot, <+ smoothing
map qu\ =+ A is always compact.

By a perametrix ford--or simply, & paraustrix=-
we shall understand, as in [2], a linear map s Eoa
auch that dp + pd = 1-3 where A—§n\ is ::..smooth.’mg map.
When M earries a foliation we will a2lso introduce o
further refinement: a parametrix will be called a
koparametrix if s comoutes with the filtration and
pur] S Apogeq® [one can always construct a parametrix
for d(see e.g., sectlons 17 and 18 below) but it is
net known whather a J-parametrix is possible. 4n
example due to Schwartz [28] implies that one nsed
not have a 2-parametrix.] The important equatien «

1=8=dp+ pd (23)

shows that 1 -5 maps Z (2 = {w we€n, dy=0}) inte B
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(Bw fwweA 5.+ 3 8 with de = ). But 2 being a
closed subspace of A is also Hausdorff, so a HLGTVS.
Hence if N is compact, by Prop. 19, 2 !’..T;S Z has a
finite codimension. Hence Z/B is finite dimensiecnal,
which of course is well known. Similarly we have the
following.

Proposition 2). Suppose that a k-parametrix

cxists. .
{a) Then if the space Zk is Hausdorft in the

induced topelogy and the induced map snzk -+ Zk is
compact then Ei is finite dimensional.

(b) If ¥ is compact and all the spectral
sequence morphisms dg,dy,... are topological homo-
morphisms then the above hypothesis is satisfied.
Proof: By [7], prop. 3.1, page 321, the induced
map 1=312,+2, has image lying in By, Thus 2,/B, is
finite dimensional by using hypotheses of (_a} and
proposition 19. This proves (a).

Now if M is compact the smoothing map
s1p = A is compact. AS dged, ... are topological
homemorphisms the vector spaces Eo.El.Ez.... will a1l
be Hausdorf? loecally convex in the induced topology.
one sees that the induced map siZy = Z, is also

compact. QED

The author feels that the hypotheses in (a) is
not raguired for this finiteness result. However ocne
would have to use mors refined functicnal analysis to
sattle this polint.

Thigs proposition tells us that it ‘s a good
idea to construct k-paracetrices for d. (fhis will
be done in subzequent sectiens.) Fer examsle, a
2-parametrix would make Ey finite dirensionsl under
above hypotheses. Note however that z;"’ are always
Hausdorff and the existence of a 2-pararetriz would at
once imply that E;"’ are finite dimensismal. 'Another
aimple observation is that Er is finit} dikensicngl--
for M compac¢t==for r = ¢ + 1. This follows frea the
fact that E, is finite dimensional ar{ that a. =1
for r > ¢ + 1, as the filtration is o’ length c. Cog
can ask as to whether there exists an r, independent
of ¢, for which Er[u) ie finite dimensional; M Dbeing

any compact foliated manifold, The recent counter—

example of G. Schwartz [28] shows that if such an r
exists it must be > 3. This follows as the groups ia
[28] are precisely E;'O(m] and Schwarz gives foliatisns
for which they fail to be finite dimensional. Note
that [28] thus implies that one may not be atle \'.c.:

construct a4 2-parametrix.
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#e shall put

e - aim gP19 (2%)
r

if the rignt side is a finite number

Bropesition 22. 1Ir E, is finite dimensional
x(H) = £ (-1)F*9Pr1 (25)
P

where x(M) is the Euler-Poincars characteristic of M.

Proofs Since the ith Betti numbor of M is
b; = I eP'%, it follows that
pro=1
x = I (-1)Pre.0a
Peq ¥
- =1)P"9eP49 ror | largs encugh.
and so {, (=1} L

But we know that the Euler characteristic of a finite

complex is same as that of its graded homology. Hence
the last expression equals
U Peq QED
I (-1)P e

P.q
One can pose more general index problems; e.g.,

i 1) in
ealculate I (—l}qug'q {if E; is finite dimensional)
n It is possible in

terms of characteristic classas.
But

some cases to guess at the probable expressiens.
the general development in this direction is at the
moment held up due to analytical difficulties:

construetion of parametrices etc., which we will

encounter in the follewing sections.
If we have a Hausdorfs Tvg V. ecquipped with a

continuous differential g,v - ¥ Then it 45 clear thas

VT = a"Y(0) and a6 we can define the gontinuous

-1 =
homelegy of (v,d) as 4M0) | o gonees 14 by F(v).

av

Note that H(V) will bte Hausdorff al=s. On the othor
hand tha homelegy group H(V) need net be Kauadorfr,

Eroposition 23. The continuous homology of
the deRham complex ig 2aZe as the deRham sohomology.
Proof:s In fact § = d{p) ecan be nharacteriza!!--by
deRham's theorem--ag those forms which have zero value
on all cycles. Thus it will follows that 3 = B ang
the result is elear, QED

Note that if M is ©ompact, prop. 23 is trivial;
B is of finite codimonsien in the Frechet space I, so
it must be closed.

This propesition and Prop. 21 show that it
might be desirable to replace the spectral sequence 'z::
by 2 continuaus spectral sequence ¥ in which 2% e¢ach
nej: we take the ¢ontinuous homology with respect To
a continuocus differential, The advantage of such a
change would be that the Hausdorfiness requirezent can
e dropped from Prep. 21:  IT there is a k-parametric,
E, is finite dizensicnal! sy prap, 23 such a spectral

e
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sequence would also converge to K (K,R). However ws
shall not go inte this here because (1) a lot of pre-
liminary eontinuous homological algebra iz regquired:
and (2} the Hausdorffness condition ought to be
studied, (since it has connections with Serre duality),

and not evaded. (See prop. 27 below.)

17, Let us denote by C™(i,N) the set of ell smooth
maps W -+ M, and by CT(,M) the set of all smooth naps
¥ =+ M which map any leaf into another. Consider a
function

F1a® « C7(M,K), with F(0) = id. (26)
Let f(n) be any function on Z° which is smeoth, has
gompaet support, and for which

_[Rnﬂn)an -1 (27)

Let us now write the formal expressiocns, with € As

() (x) = [ (Ftm*a)im s(man  ~ (28)
Em
and ()0 = [ [%(o}1, FOnertu)on)
it 3t

+ £(n)dndt (29)
Here the map P(nt)1dxI + K is defined by
(%,t)>F(nt)x and for each t€[0,1] we define the

injection Bosll = MxI by xes(x,t), SEE is the standard
vector on Mx1 aleng the t-direction. One should
compare these formulae to those in Secticn (10).

We can topologize the set of all maps, G™(M,N),
in a natural way wizh the ¢™ topology: 2o 2 maps ara
'near' ecach other if (in local coordinates) all their
derivetives are ‘near' each other. The subset
OI'(N.MJ shall be given the subspace topology.

Now if we require that the function F be
continuous in (28) it follows immediately that tha twa
integrands in (28) and (29) are continucus. Since they
have ecempact support also both these expressions maike
absolutely good sense,

Eropozition 24. p is a2 chain homotopy between
1 and 8y i.e., 1 =5 = dp + dp, If the image of (28)
lies in CT(M,M) then s preserves filtration and p is
a 2-chain homotopy.

Proof:s GSince 4 commutes with induced maps w-a sea that

dpy + pdu = f f: (“;13_1’(?!1}‘01 + e;ij_p(m*du,)
: & aT

R®
* f{n)dndt
equals
-
Im j‘: (e"'(di_a_ + 4, F() m).f{n)dmt
& at by

&L
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which, by {14}, ie the same as
o * Y,
J‘n J° (93z, Ftne) ") st mpange o
a1 it

Integrating with respect to t we get, a3 F(0) = id,
[ westman « [ (2(n1*w)-tinidn
o &®

ans so, by (27) and (28) this is the same as
w - Sy

Wow, 1T F{m)il =+ M maps leaves into loaves then
F(n)*1p = & preserves the filtration. So, by (28)
s1p =+ A preserves the Illt.ration-l Considering Mx1 to
be carrying the 2-foliation (section 9) we see that
P{nt)"sa(M) - A(M xI) also preserves the filtration.
Sinece 5’; is transverse to the 2-foliation of MxI

it follows that the filtration of i, F(nt)*w is one
T

unit less at most. Since e;;;\{MxI) -+ A(N) preserves
the filtration we thus see from (29) that pip =+ 4 obeys
the condition pui) Shyy v Q20
To construct & parametrix we need to choose
F sc; as to make the map sip + A & smoothing map. PFor
the construction of a 2-parametrix we will have to
ensure that the image of F lies in CI(N,M}. )
. Consider the following situations M is

parallelizable, and admits a global parallelism by m
complete vector fields. This means that we have m
globally defined tangent vector fislds on M, which are
linearly independent at each polnt, and which define
l-parameter groups of diffecmorphisms of M. Thus we
have a continuous function
Fig® -+ c™(1), F(o) = 0, (30)
with the right hand side given the usual Frechet
topology. Lot us denste the l-parameter group of
diffeomorphiszs of F(n) by Feln). Then by taking
Fin) = ?:(n) we pet a continuous funetion
F1a™ « DifL (W), P(O) = id. (31)
Note that if M is compact the completensss assumption
can be dropped from the above. The space of all
diffeomorphisms M -+ M which figures in the right side
of (31) is topologized as a subspace of (.M}, fe'll
have occeasion 2lso to employ the space Di.f.‘fl (%) of
diffecmorphisms of N which map leaves onto leaves.
How choose an x €M and consider the map Fx of
E™ into M given by neri( n}x. This map takes 0 to x.
Also it maps I,R", the tangent space to 2 at o
isomorphically onto T M. In faet, using the cenonical
idenvification of T,3" with ™, this map is simply “the

map Fx'ﬂn = Ty given by ne*F(n)(x); and, by hypothesis,
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it iz an isocmerphlism. It follows therefore that
F‘ug'“ = ¥ maps some neighbornood of 0¢a™ diffea-
morphically onto a neighborhoed of x€X. (In gemeral
we will say that the continuous map of (26) is locally
transitive at x &M if P,.R” = i has the above proparty.)
Let us consider also the product space M xM and
let 4 denote the diagonal in this space. The map F
leads to a natural map rblm xgm -+ HXM given by
(x,m) (x,l’(n}x) which maps (x,0) to (x,x) €4a. Again
it follows from the given hypothesis that the tangent
space at the first point==(x,0)=-=is mapped isomorphical-
ly to that at (x,x). Hence uomelnui;hbnrhooa of the
Tirst point is mapped diffeemorphically onte a neighbor-
hood of the second. From this we conclude that given
an X€MN one ean find a neighborhood ¥ of 'x such that
a neighborhood of V of 0€R™ iz mapped diffecmorphical-
1y onto scme neighberhood of y € by Fy for each yEV.
(This sentence makes sense for any cm’tlnuoﬁs map
Fig™ = c™(0,4) . We will say then that F is locally
neitive near x.)
Now if M is compact then the last sentence
can be strengthened te read; There exists a neighbor-
hood ¥ of 0€§" which is mapped diffcomerphically ta

some neighborhood of yeM by any Py‘ yEM. (We will

&7

say that (25) is w znly treneitive if 1t poszesses
the property expressed by this sentence.)

We will assume now that the function f{a) used
abpve in construsting s and p has its support ingide
the aforementioned neighborhood ¥ of 0 € En.

Proposition 25%. If the continuous map
FiR™ + ¢™(K,5) is uniforsly transitive and if f(n) has
sulficiently s=all support, then s is a smoothing map
&0 p is a parametrix in Prop. 2%. If further the image
of F lies in C.f()l,u_] then it is a Z-parametrix.

Proofs By sufficlently small support we simply mean
that the assuzption just made above holds. Now

u (%P (1)) = K gives us a neighhorhoed of the dlagonal
X

& = MxM such that for each (x,¥) € N we have a smooth
linear transformation K{x,y) of u‘; to a1} @0, given
by wly)o> (B u)(x)@ 0t here 1 - F1(y) and g is the
measure in F‘{U) corresponding to the measure f(n)dn
in U, under the diffeomecrphlsm Foa Defining K{x,y) = 0
for (x,v) £N we thus get & smooth kKernel k on MxM. It
1s olear that the = given by egn. (28) is the same as
Sy & szoothing map, given by (22). QED
The remark made above indicates that this
result applies whenever M is a compact parallelizable

manifold. If then the image of F lies in CJ(T)--the
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vector fields of the foliation--then we will get a 2-
parametrix. If M iz net complact, but still has a
parallelism by complete vector fields (30), then F

is only locally transitive near each x. This situa-
tion will arise later on when we take M to be a

prineipal bundle. H s in that case F

is equivariant with respect to group action on the
fibres. Due to this F will be uniformly sransitive if
the base space is compact. (This construction will be

postponed to Sec. 21 since it usesconnection thaory.)

18, In this section we will make a few comments which
are not directly needed In The ensuing developments.

a. For non=paraliizable manifolds we will
rapidly sketch the modifications to be made on the
above argumenti

A. Pirst we notice that if we have a finite
number of linear maps 83473 of A such that
1-g;=dp; +p,d, then by putting a= ByBaB5ere and
p'p1+51p2f“1=2p3+ sss We get 1=g=dp+pd. Hence
it is enough to show that #8000 is smoothing.

B. Now, given a manifold M and any X €M we
can always find a continuous map Fia™ - (1),
F(0) = 0 guch that for all y&V, a nhbd, of s

Fy;n‘ + T, is an isomorphism. From there we can find

2 mep Fig" + 0ifF (M) whieh is loeally transitive near
%, We will take F(n)(y) ¢ Ye zero in M-V; so
F(n){y) = y outzide of V. Now using this map F the
proof of prop. 25 shall show that s 1s & smoothing map
in some neighborheod of x, i.e., any CO form with
support inside this neighborhood is capped to a ¢™
form by s.

€. We now can find (as ¥ is compact) a finite
number of maps S50y of p such that we hava (1) I'S.t
= dp, + p.dy {2) 8y smodthes forms inside the open set
i\‘}. (where 2 wi = M) (3) ana any form with support in
M= h‘i is mapped inte 2 form with suppoect in M- 'n'f

{hare if =} and y W = M), The last ean be achisved

by reducing the support of the riln} urnl.c_n are used
to eonstruet s;. But frem (1), (2], (3) it follows
at once that s = 5152‘53"' will make any @ form into
2 smeoth form. Thus 1-= = dp+pd iz the required
parazetrix.

D. One notee that this patching argucent will
run into trouble if (with W foliated) we impose the
requirement that the image of P lies in BAEL (1)
However for fibered manifolds this proble=m ecan ba .
avoided. We take a product neighborhood V and a
continuous map Fia™ - C3(T) such thas 'fy

7




igemorphism for yeV: F(0) = 0, Fin)(y) = 0 for
negd c 2% and y£V, and for all n and y£ 5 1(v)
(p1#t = B being the fibration). New F{n)} will map
W=V into M=V and we will have no trouble in seeing
that (3) holds besides (1) and (2). Thus patching a
finite number of s; constructed fros such ¥y will
Eive the required 2-parametrix. (Note that if each Py
disturbs filtration by 1 unit, so doss
Pyte By “1‘2"3’ sss = pj Since each 8y commutes with
the filtration.) We record this as

Propogition 26. A fibered manifald possesses a
Z2-parametrix for d.

B+ We remark that the hypotheses used in step
D of the construction hold alse Lif the follation has
diffecmorphic leaves, is regular (i.c., each pt. has
a transverse nhbd. meeting a leaf only once), and
arises from the orbits ef a Lie group which acts
freely on the manifeld. For such a foliation we can
construct saps F with the sams properties as in D. So
such follations ariaing frea the free action of a Lie
group also have & 2-parasetrix.

b. Transverse lnvariant forms form the eozplex

PO L (32)

Reinhart [26] censtructed a parametrix for D %D under
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the condition that one has & bundle-like metrix. And
thus (sinece D s & HLCIVS) is follows that the
hezology, l.e., 25’7, is finite dimensiensl, under
this condition. Since Schwarz [26] has shown that
E;'o need not be finite dizensional (32) may fail to
have @ parametrix. In any case if we have maps 0.5 D
such that 1 =8 = dp+ pd, thea they induce zaps &' ,57
in the complex (20) of prop. 15. Thess imdueed maps
8till obey the identity 1-2" wd 4 p'd . so if
the spaces of (20) can be given a Mausdorfs topology,
then we will have a parametrix for this comples also.
¢+ Now we polnt out the n‘.!.np:l.e connection
between Hausdorffness and Serre's duality. Woe follow
the arguzent given by Serre [20]. The basic lemma
is that if V is a Freche: aptce and the differential
41V 4+ ¥V is & topolegieal hemezerphian then the
hezelogy Hd('f) is also a Frechet space (in the irduced
topology) and its dual is Hy, (V') where v' %3 vr 1g
the topological dual. Thia is Lemma 1 in [20]. Let
us now take up the forss with distributional coef-
fielents as in [20]. This complex (X,d) also carriss
a natural filtration and thus gives us another
spectral sequence F2'? also converging to the deRham
cehomology. One now notes that Sg'q has the
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topological dual F:"p‘l"‘ {same proof as Prop. & of
[20]) and that the dual map dj corresponds to dg
Fg + Fy under this isczorphism (same proof as
Prop. 5 of [20]). Using these remarks cne gets the
following result by using Lemsa 1 again and again.

Propesition 27. If the speetral sequence
morphiana dg.d;,ee. &re topological homorphisms (with
respect to the induced topologles) then Serre's
duatity EP' = £27P+1"% nolds (i is of courss
orientable).

This propesitlion implies that Lf E) is finite
dizmenslonal then Serre's duality holds. And thua all
o4 dimenaional foliations with dim gl < w 1ie only on

ture Ter: olds.

d, Calewlations made by Kodaira and given by
Reinhart [26] show that for mlmoat sll irrational flows
on the torus dim £, <= {in fact Ei'o - 32"“ - B} o
= El*l « B). But on the other hand there exist
: 1..0

irrational flows on the torus for which dim £

-_g}'l_-_-;. We will recall their argument below.
Note for the moment however that an irrational toral
flow ie ergodie (i.e., any measurable set made up o'f
complete leaves is of measure 0 or 1) and pinimal
{i.e., every leaf is dense). So naither of these
nypotheses suffice to ensure dim 31 < =,

el

Think ef the 2 torus ?2 &8 vhe {r.,s) plana
satisfying e £+ €1, 0 £ 5 <1 with proper beundary
identificatlions. Let us be given a 1-follation
represented by straight lines making an angle 8 with
the r-axis, such that tan g = 3 is an irratiocnal nupber,
Let us dencte by x the dirsction aleng the leaves. Let
us now try to calculzte Ei'“. Obviously z}"‘ can be
suppesed t0 be all sa0oth forms § = mdx. Now if &
lay in 3;.,u then g = g{ where I is another smooth
function. Thinking of beth @£ as bi-peciodic funa-
tions im rys we have their Fourjer ssriag
© = I, oxp (2riar + 2wins), £ = 3 I, oxp (2qlee
+ 2nins), Substituzing n p = 1 we see that wo must

have @y, = 0y and then fan® mc%%ﬁm

for {m,n) ¢ {0,0). (The denominator m+m. fOas i

is irrationsl). Conversely whenever Pgp = © one can
build a fourler serles for f. Hewever this series
does not converge for some value of As But if ) is
irrational enough--i.e., m+m = £ n ), where

£(n) = 0(n®), & > 2--1t does converge to a smooth
funetion. By a theorem in dicphantine approxizasion
theory (due to Khintehine) this conditien is satisfled
for all 3 ocutside a set of measure TOT0.




- 73

prof. Gromev has suggested that this example
may be extendable to nilflows on nilmanifolds {see
Auslander st &l., Annzls Studies no. 53)-

If the follation has a dense leaf note that
dim 311-‘-0 < w, This follows since EE'“ consiste of
transverse invariant forms and the value of such fora
over o leaf s deternined by its value at one point

thereofs
0. The following questions are interestings

1. 1s dim By <= for all pnosgv flows: (Ses
a Dook on dymazical systems for definitions.)
2. 1s dim :53 < w for all compaet follated mani-

folds?

As yet, the author is wnable to answer them.

19. Im this sestion we shall cover the general rela-
tions betwaen connaciion theory and ous spectral
séquence.

There are twe =aln (kinds of) definitiens of
connsction, The first may be ealled 'spalytical' as
it is convenient in differential gecmeiry. Here a
connection on a vecter btundle W (on 1) is a merphism
S 5e"(#) @CT(1"N) obeying certain rules. [See)
e.g., Kobayashi and Nomizu.]
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The second is the "algebralcal’ definision as
it iz convenient for defining characteristic classes.
Here the connectlon is definsd me an algebrz morphisz
of & finite dimensicnal algebra inte the exterior
algebra of foras over P, tho principal bundle of W.
{5ee, e.g., H. Cartan [6].)

The two definiticns are dus, malnly, to Keszul
[19] and to Ehresmann [12], respectively. We shall
lock at connectlon theory from both these viewpolinta.
First, she ‘analytical’ aspect.
19A. Let W be a smooth vector bundle cn M and denote
by Al(W) = apli} tha vector upecal of smooth sectlons of
W@ )T, Let ua try (in analogy with the exterior
dorivative dip = o) to bulld an endosorphiso
afgn Ag) =df Aguro+ NEAwAc+ fgdy Ag

+ (-1)Pgy 4 20 (33)
Here £ € c°(m), g € c™(0) = %00, w € 4P, o € 2% ana
the meaning of the various products is the natural one.
Nete that by (33) a2 cannet be the zero map.

Propogition 28. One can find an ondemorphizm
aun(W) =+ A(W) satisfying 33 [2 is called & gonnaction
on WJa .
Proof: Locally A(W) is generated by szooth functions,
smooth sectlons of it and smooth forms by employing the
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varicus products. Henee, by (21), 1t suffices locally
to just define 31a”(4) « A2(W), Lie., C7(W) 470" W),
To do this we gelect, for a basis 8 = ByaBgpeas of
C€™{W), a matrix y of 1-forms and put

28 = ws (3%
If in an overlapplng locality a basis 8° is chosen with
8" = gs, we put ' = (dg+galE (35)

Now we chock that w's' = dgs + gds which is 3(gs).
Hence the definition extends globally. Actually Lf M
is compact a finite nusber of such matrices w (galled
econnection matrices) are enough to define 3. QED

Kew we naturally ask if ons canask for 3% = 0.

Proposition 29. One can find an endomorphisn
3i(H) + A(H) satisfying (33) and 2% = 0 if and only
4f the structure group of & can be reduced to & finite
subzet.
Proofs Let us first take 22 -0, Choosing as above a
vasis & for ¢™(W) in a local area this means 2% = 0,
1.0., 3{ws) = 0 {with above terminoclogy), and hence by
(33), %8 + 38 Aw = 0, L.c., dys - i A ws = 0. Hence
we got the equlvalent condition

f=d-wAw=0 (26)

The satrix (1 of 2-forzs (depending on s) 1s called a
curvature matrix., One can see that in a new basis

8' = gs we shall have
o' =eng™ (37
and hance (] - 0 1s a condition quite independent of
the local basis s selected. ' Zy the Acbrose-Singer
theoren (see Xobayashl and Nemisu, Chapter II, asp.
Pe 92) this izplies that the looal {or the rostricted)
holenony group of W is zero. Loeally trivializing W
by horizontal sections we can arrange that the
coordinate transformatlons are constant waw zatrices.
Converssly let us suppose that we can cover by &
finite nusmber of trivializations g {‘unxa of c‘“u'.i)
such that the connecting matrices g are constant. How
take  as the zero matrix in each of thesa. Since
dg = 0 the required transformation law holds and we
have a connection. It la elear that one has 3l 0. gep
Before procaading with proviag ancther prop.
of the same kind we will indicate seme additicnal
results, Given a conngction 3 on W one attempis to
conpute the cohozmology H.'[ﬁ,h‘a) where W, denotes the
sheaf of germs of horfzontal sections (fve., 3f = 0)
of W. 1In the particular case given by the above
proposition this sheaf has a fine resolutien by
0+, -+ OO 4 s v AT(W) w0
and we have a generalised deRham theorem. This

LR

78




T8

echomology H (K,4,) is traditionally called 'with
locel coefficients #.' In the general ecase such a
resclution is not remdily avallable and one has teo
resort to methods of a different kind (see work of
Nijenhuis, Spemcer, ete.). It ism clear that the
theory of characteristic classes is intimately related
to this cohomology.

Now we employ the bigrading of section 14 and
denote by AP*3(4) the vector space formed by the smcoth
sections of # @ AP*II®, We denote by 3gy the yary of
a conneetion which is of bidegree (0,1).

Propesition 30. One can find an endemorphism
31ald) + (W) sacisfying (33) and 35, = 0 1f and only
if W is an invariant bundle.

Proofi Suppose that 3%, = 0. Hence, with respact to
= local basie & for CT(W}, the curvature matrix
consists of 2 forms having filtration » 1. Using the
Ambrose Singer theorem we see that the .'I.ocai holonozy
of each-leaf is trivial. Now if we cover i by a
finite number of trivializations e keeping each of
them horizental along leaves it follows that the
connecting matrices g are constant along leaves.
Conversely take some trivializations of W which ars
related by matrices g constant along leaves. Let gy

be the matrices of any connsction. Now Compare

parts of (35) of bidegres (1,0). we ges
w;u = (dg + 9“‘10}5.4’ These matrices wyy give required
connecticn. x QED
An invariant busdle shall always, if not
otherwise menticned, carry such a connection. We shall
call this a Bott conmsetion, The abeve proof suggests
that for each ée H‘(m.cu), G = GL{w), we alse dofire
the notlon of a c}-:ott connaction on W aa follows: Let
us take any cocyele (Uig) repressnting That faQf is
a covering of M by open sets Uy and g conslats of
sections slj over U‘ n Ui 6f the sheal Gy which obay
By ik = Egp (see Hirzebruch's bock for more detalls).
Now on each Uy choose trivializations s; for C¥(K) so

that sj = By g8y Let wy be the connection matrices with

respect %o . If they ave of filtration » 1 we say
that we have uﬁ-zu:: eonnection, Thiz is a valid
definition for if some other trivializations s;_ are
taken equation (35) shows wi is also of filtration » 1.
Agalin If some other cocyele (U,g°) is chosen we have
815 = £1°ay ¢, where £; ia section over Uy of Gy. So
we see that 83 - g;jai where s} = :;191. By (35) the
connection matrices with respeet to 5| will also be

of filtration » 1. The proof abova now tells us that

&0




Lf the invariant bundle ¥ is associated tofe Hl(H,G))
then wo have a §-3m= connection on W.

We ghall denote by SIIN",I the homology of A(W)
under ‘Dl' if 2 is a Bott connection. Also dencte by
EL(W) the wo-gizensional veetor space of all endo-
morphisss of B. The group GL(w) acts on it by

81 =gl (38)
Using this action we construct & vector tundle We with
fibre dizension w® associated to W. It is elear that
one can think of the gupvature {nr a connection
aalW) = A{w:l) as an element of Azi'ﬁ‘g) given locally
by the curvature matrices [} encountered before. We
denote this global form also by fl. So f1€ AZ(4%).
When W iz invariant and 3 is a £-Bott comnection we
get a part 0y, €a*'2(#) wnieh satisties 3gy {0y ,4) = 0
[because [} = &y = w A w shows that loecally, e
Ay, = dmu}. Hence we get a class r-‘ﬂl.l:l Eg M (W)

We recall that in Atlyah [1] such & class was
used to characterize those complex amalytic bundles
which ean admit & complex analytic conmection. FProp.
31 below gives an analagous result. For each
é’e H"tu,ﬁn;l a connection on W (& vector tundle

associated toé) is called ané -invariant gonnection

if its connection-matrices wye WOt any trivializations

81

8y agroelng wizh a cocycle (Ug) or.;. censist ef
transverse invariant forms. Note that the curvature
of any such connection is of filtratien » 2. In other
words nl.:l. = 0. Any connsction cbeying this eenditien
will be called an invarjant sonnsction. I the veasor
bundle W adatte ané -invariant semnsction we shall say
that it is seifr,
Brepoaizion 3i. 4 bundle w is stiff if and

only if [, ,J€£;' () vantshes.
Froofs The "only if+ part is obwvious. sSo orly the
“enverse needs a dezonstration. ?l is new just an
invariant bundle and we choose a Bott commection and
then look at the homelogy class Enl.].] 1ying in
E}'M0®) . We assume that it vansshes, Tmus there
exists a ona-form ge;\"'owz} such that amg = nm'
Choosing local tases s which are horizental over
leaves one can think of £ 23 being lecally defined by
matrices varying by §' = geg™l, 50 ir w denctes the
connection natrices of the given Bott conneczion,
w=-# is alse a Zott comnection. The relation
g 8 = 91.1 reads %l:m-a} = @, i.e., thaz these
matrices consist of transverse and inmvariant :-{an—:s.
This shows that W is esirs, QED

" We refer the reader to Deligne [10] for a
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similar viewpoint of connectlen theory. [He alse
considers cennectlons as derivations of Alw) lying
above d.] Also the work ef Melimo [21] is elosely
related to the above, e.g., he has the notlon of an
invariant connectien; though the reduction of tha
structure sheaf is net stressed.

198. Thie section will ba devoted to duzllsing the
vesults of section 194 into statements about the Well
hemomorphisz. Also some essentially new features will
bo pointed out.

It is well-known--see, 0.g.s [17]. Pages A5-ff-m 5
that the definition of cennestion in section 194 (by
patrices g obeying (35)) is eguivalent to putting on
P {the principal bundle of W) a s=ooth plane field
transverse to the fibtres, and of dimension m, which is
preserved by the group astien. with thiz in =ind we
now go over to the 'algebraical' treatment of connec-
tions.

Let G be any lie group. We'll first of all
introduce the notion of & G-algetra, By this we mean
a graded anticommutative algebra over i [or, more
gonerally, over any commutative ring with unity] which
is supplied with a differential d [i.e., 2 skew
derivation of degree +1 and order 2 (€ = 0)] and for

-0

each X € G-~the 1lis algebra of G--iz supplied with the
endezorphisas iy [which is a skew derivation of degree
=1 and order two] and L, [a derivatien of degres zers]
such that the fellowing commutative rules hold

re,yg = [epedyde ipy vy = Doy 3000

Ld + el = Ly (39)
Note that these imply that [Ly.e] =o0.
Hew we give an example of a real G-algebra. Let us
take the algebra W(G) = AG*®SG* formed by tenscring
the exterior and the sym=etric algebras gensrated by
G+ If we agree to give the sradi.r.g 2p to polyromizls
of degree p it is antlcomputative. We will use the
notation A(G) {roap- S(E)) for AG" (resp., SG*) in the
following. Now we define the 3 endemorphiczs en the
generating elements ,'(G) and S'(G): this will define
them everywhere as they are derivations or skew
derivations. Note that any (skew) derivatisn will be
zero on WO(C) = B. We now dafine L for wealic),
€8 = ¥2(0) with Lo = w(X) while on S1(G) Lt
vanishes. (ko)
Les for weal(6), Lpeal(o) with Lu(¥) = w{lx,¥]).
Por pest(6), Lpesi(c) wizh (Lgh(¥) = Qi[X,¥]) (61)
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4y Let h demote the canonical isomorphiea )\1(0} +81(6).
Then for wea'(0), (d-MweA%(0) is defined by
{Ca-mu),n = 2o (X1 for pest(a)
dpent(6)@51(a) with idp = Lyy (s2)
Note that the last part of (42) means that if
Xyekzeees i3 a basis for @ then &y, = %‘, w.i@Liji for
@;€5MG) . We refer the reador to Cartan [6] for more
details regarding these definitions. Thers it is alac
shown that the comzutation rules (39) hold. This wW(G)
is called the Weil Algebtra of G. [Note that it is
really G that is important: we gan start off with
any lie algebra and do the above construction.]

Now we will define a connection to be a G=
algebra merphism from W{G) to scme other real
G-algetra, Hereby a G-algebra morphism we mean that
the entire G-algebra structure is preserved under the
map.

To point out its relatlenship to the defini-
tion above we first of all see that the space of all
smooth forms on a principal bundle P with group § is
in fact a G-algebra: Denote this space by A(P). Then
dip(P) =+ A(P) is the exterior derivative. On the ,
other hand for each X€§ we get a canenical vestor

field along the fibres of P. By taking the interioer
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product with respect to this vector field {which shall
2lso be denoted by X) we define LealF) + a(2).
Plpally Lie differentiation with respect to this
vector flold yields us the third endemorphisz. A1l
the equations of [39] are valid by standard results——
see, o.g., [17].

Now take any C-algebra morphisa w(g) -%-MP}-
Boing an algebra morphism it ie determined uniquely
by its values on A(C) and s*(0). But by (h2) ror
any g = T SHG) we have fip = £(ny) - a8y - £(d = nw.
Hence it is deternined sizply by its restrictien
Ale) Sal(p). This restriction conautes with L, and
with tho maps 1,44(C) + 8. Thus if Wy atdgaees I: a
Basis of 8 = 41(0) then £(u,),2(0,)sees will give us
BEm00th 1-forms on P which are equivariant under the
right setion of & [ £ commutes with 1;] and also
transverse [V I conmutos with 1,]. Then ker Tlwy)
n ker .f(mz} N ses will b the required m-dimensicnal
smooth plane field which ig transverse to the fibres
and which is preserved by the group setien. Thus we
have rejoined the standard definition of comnection
recallad above. One can of cousse retrace the argu-
®ments back and interpret any such Plane field az a
G-algebra morphisa.




The restriction sap 5}(6) Lri?(F) can be
intorpreted alse as & G valued 2 form on F which is
equivalent under right action of G. It is the gurva-
Iure of the connection f. When we are thinking of P
as follated by the fibration we will write P: to
distinguish it from the normal case when P is foliated
in codimension o by using the given foliation on M.

Pronosition 2. The image of st(a) 5 a2(r)
lies in a3(R,).

Proofs The proposition simply states that the curva=
ture form is herizontal. QED

#e shall say that a conneetion W(G) 5 A(P)
is a Pott Connection if the image of its curvature
wap 51(0) £ A2(P) 1ies in Af{?}. i.e., 1f the curvature
is of filtratien » 1 with respect to the codizension
¢ feliation. By the resarks made above this agroes
with the definitlion used in section 194. On the other
hand the principal tundle F shall be callad.i_n!g!._arg
Af we can cover M by trivializations of F in which the
coordinate transformations Uy 0 Uy =+ 0 are constant on
leaves. We shall also set up the l=filtration of
W(G) by saying that an element is of 1-filtration = i
if it lies in the subspace W(C)® 8% (0), L.e., a1
those things which contain polynomials of degree z 2i.

&y

B8

When we are considering W(G) with this fileration wa
shall write it as (1)W(G) and (1)d,(G) shall denots
things which have 1-filtrasion z 1.

Erggopition 33. The differential diW(G) +w(G)
preaserves the (1)-filtration.

Proofs This follews by examining the definition of
d. EEs)

The dual of prop. 30 is not! the follawing.

Eroposition 4. A prineipal O-bundle P is
invariant if and only if we have @ cennection
Taf{1)W({G) = A(P) eemzuting with the filtrations (i.e.,
& Bott eennectien). ’

We now examine in more detall the relatlonship
between the structure of the invariant bundle P and
Bott connections.

The iscmerphism classes of principal G-
bundles over i form the set n‘(x.asa--saa. ege,
Hirzebruch [15]. Choose now an element & of the
cohozology set Hllu.Gn) « Then if f is an é -Batt
eonnectlon we emphasize its relationship to 4 by
writing 2(§).

Erepesition 35. ALl ;-aott connections
l‘(;JIU)?l(C) =+ 4(?) 1ie in the same i-chain hu:otﬂp;;‘
class. .
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Freofi Let f,,f, bo twe such Hott ccnnections.
Choose  cocyele (U, Uy n U g of & in
which both 1‘1 and f, can be represented by conneetion
matrices of filtrations ». We now use the 1-foliation
of WxI (see section §), L.e., we follate MxI in
codimension ¢ in the obvious way. We will have the
principal bundle PxI sitting above MxI in the
natural way. How we can define a third connsctlon.
Pi(1)W(@) + (1)a(Px1) as followss (2(g)(etn))
= (£ + t(g0e) - £,00) P 0x) ana
{P(q)) :}(P; ft-) = 0. Here ¥ is a tangent vecter to Py
6y = P+ PxIis xsax,t and & is the standard vector
on 1. Purther peal(e) and BT = P21 1z twex,1.
Sinee it obvicusly commutes with ig, Lg, for all
£€G, this definition Fipl{c) =+ ;\1{9; k4 ) .-xums to
a t:-algal_tra merphism. One sees that with respect to
%he cocycle above the connection matrices of P will
algo be of filtration z 1. So it is in fact a Bott
connection. We now define the chain homotopy
s1W{G) =+ A(F) of degree -1 by the formula
a{g) —J: s:i-a_ﬂg)dt for all pe W(G). Just as in
at

section 10 we compute (ds + sd)(p) = I: [ dij_?{qg}'dt
3T

1
+ _[o & 1, S(g)dt since 463 - 634 (74 commutes with
%

induced maps) and P(dz) = 4(Fp) (' P com=mutes with d) -

9 oy Lia? Flglaz.

Henee the right hand side equals

Por peal(s) it s clear fro= the definition of (o)

that it equals £,(p) - £,(m). Again for gesi(c)

the eurvature map ?151(6) + 2%(Px1) is given by

Ply) = 000 + t(f00) - £,(0)) + T TE0aT A &

where the bar denctes herizontalization ([17],

P» 76=77)+ (We use tho projection PxI - P and think

of £i{gp)s f,(p) as foras on PxI.) So L, of this
et

is fy(p) = rlcq;a + forms containing dt. Hence
G:La is juat 2,(p) - £;(p). Thus the relation
P
ds + sd = 2, - 2 helds. Finally from the definition
of 5 it is elear that it preserves filbration. 5o s
is the required i-chain homotopy, in the terainclogy
of seetion 9. . QED
An immediate consequence of this result is

that for r z(the induced spectral sequence maps
£(£)1(1)5,(6) + 2,(7) do not dapend on the cholce of
the Bott connection f. We can record this as
Corollary 38. Zach invariant strueture & ¢ KL(4,Gp)
gives us a well-defined map

& 12,0} +2(P) for 21 (3

9
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Kow the dual of Proposition a1 of sectlon 194

is the following
proposition 7. 4 bundloé( K (w6 is stiff
if and only if the map E.s{"m - 3;"'1(?) vanishes.
Proofi This map becomes simply [nld'j 1f we interpret
it in the definitions of section 19A. QED
In the present terminoloegy & connsction
£iW(G) = AlP) is ealled an invaplant gonnagtion if the
image of its curvature map £i57(G) = AZ(P) lies in
)\gn?}. (Hote=-=by Prop. 32-=that any connsction is
to the follation of P arising
from the fibration.) We now define the Z-filtraticn
of W(G) by setting {2}y, (6) = (2)¥p(6) = [SSEAG
It follows froa proposition 33 that the differential
Tha

imvariant with respect

4 of w(G) also preserves this filtration.
following proposition is obvious from the preceding

developments.

Progosition 38. 4 principal G-bundle P is
stiff if and only if there is a connection £3(2)W(G)
+ #(P) comsuting with the filtration (l.e., &0
Invariant connection) .

Purther a detailed exazination analogous ti_:

the above is possible. Take an elemont BE H"[n:.un) '

and let I be an g-invariant connection. To emphasiza

this relationship we use the notation f{g).
(6} s (2)#(8) + A(P) lie in the same 2-chzin hometopy

All ¢-invariant connectionsz

elass.

Prooft We proceed exactly as in the prcof of Prop. 35

exoept that we now exploy the Z-foliations of HxI (ses
section §). With this change P will also be an
invariant ceoanection. Now The chain hemetepy 5 will
disturb filtration by one. unit. QED
This result.generalizes 2 well known theorez
of Well. Pirst, we see that the induced spectral
sequance maps T(&).(2)E.(8) ~ Er'(?;. for r 2 2, do
not depand on the cholee of the invariant connsction
£{8). We thus have the following.
oro! 40, Each stiffness structure 8¢ K'(N,C
Elves us a well-defined map
Ellz)B,IG} =+ Eu(P), for r 3 2. ()
To get the clasgical case we assuze that we

o)

have the point foliation on M. One can see easily
from the definitlon ef the Weil algebra that
(2)55°(c) are siz=ply the symmstric Lavariant poly-
nomials of G--gee [6]. Also it is clear that
E;*%(?) = £2'°(4) s and o, for a point folletion |

E;'O(P‘) = H'(M}. Thus in this case EI(ZJE;'o-u}f'(HJ

22
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1s elmply the Chern Wel) homomorphism. MNote that for
a point foliation G = Gg and so u¢ KM(,6y) Ls any
differentiable astructure for P over M.

KamboreTondeur [16] alse interprat Weil
zorphisms as spectral sequence morphisms, but they do
net give the hometopy invariance results (Propoaitions
35 and 39).

We shall end this section by pointing ocut that
one can eaploy the Chern-Sicons modification in the
above discussion. If £ = W(G) = 4(P) is a Bott connec-—
tion we note that £(¥_, (0)) = 01 thus we can "throw
away® terms involving polynemials of degree > 2¢.
More precisely wa replace W{G)-=whanever we are
dealing with Bott connecticns--by the quotient
iflG}ﬁ"l(GJ- The rest of the treataent is precisely
as above, The advantage of this is that though
E_(EJ = 0 without truncation (see [5] where 1t is
shown that H(W{GJ) =0} B..(G) F 0 with this mofication.
In fact one can coapute E.:c)--uh medification--to
be equal to the Gelfand-Fuks cohomolesy of the formal
vector flelds on 5 [See, e.g., Theorem 2.1 in
Quilleamin's paper in Advances in Mathematies, 1973].
In faect Godbillen, Vey, Bett and Haefliger have E
appreached the problem of understanding the “exotic”

characteristic classes from the viewpoint of this

Gelfand Fuiis cohezology.

20. Now the most impertans example of an invarians
bundle is the bundle 3* e T of covestors which kill
the invelutive dlstrilution D & T. Any conneetion en
2 subbundle of T or T* can be oxtended to the whola
bundle; it is such linear connections--L.e., connecs
tiens defined on the principal tundle L{M} of zangent
frames--that shall concern us now. We shall not

agguze that D is ily involutive. Any

tlon on T* reducible te ', such that the cxe part of
the curvature is of filtratien ﬁw.r.t. D shall be
called & Bott Connection. Here if Qg iz the ecurvature
ite exec part is given by i, > c.

Eroposition %, Any comnection on T+ which
iz reducible to D* and which has zero torsion must be
& Bott connection) and then D is involutive.

Preefy Without recalling the definition of tersion
we simply recall one of the consequanzes of 'zaro-
toraion,* viz., the equation

48 = a(ve) (45)
[See Cor. 8.6 in Kobayashi and Nemizu, Ch. II1.]
Here A denctes alternation and v denotes covariant

differential. New use this equation with y & sectlon
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of 0* and X € C7(D), YeECT(T)s
dlX,Y) = $[{%a) (X,¥) - (%) (¥.X}]
- §E(VrmJ(KJ = (vwi{n)]
Since cur cennection is reducible to o' both 9y and
Vit are sectiona of p*. Thus (7wl ix} = 0. Thus
(V) (¥) = -2du(X.Y) (46)
whenever w€ CT(D*), YeC™(T). But egn. (46) is pre-
cisely the condition by which Bott [3] first defined
@ connection whose curvature has filtration » 13
But if we take Y€ G™(0) in
(86) we get do(X,¥) = 0, i.e., w{[X,¥])= 0 (as
w(x) = w(¥) =0) for a1l we c™(p*). S0 [X,¥] €D
proving the required involutivity. QED

previded D was involutive.

The proof exhibits eclearly the following
Corollary 42.

and obeying {(48) if and only if D is involutive.

1% adnits a connection reducible to D*

We shall say that a connection on T* (resp.
T) of zero torsion which is reducible to 0 (resp. D)
is a Walker connection;y for the reason for this name,

see [37]. Then we can extend the above corollary to
the follewing
Exopesizion 43. A wWalker conncction exists if

and only if D is involutive

Proofi Clearly it suffices to prove that a Walker

connection exists on T when D is involutive (T,T* are

associated to the sampe prinmcipal burdles %he induced

conngetion on T" will supply a wWalker comnsotion there).

Denote by I' the fibor-bundle with fiber '5“3. strusTure

Eroup DLLT lBﬂ }o and gosrdinate transformations
k ,=a i =

- ,gxax_’ax_u#-,_azx_u%

B 3% 3R’ axt 2RPARY ax

7]
a8 we go from local coordination X; t6 X . A linear
i «

connection is & section of v One has the relatien

n G)-Rig
i

(48)

with the first definition. [Suu‘ Hobayashi and Noalzu,
[17]. ch. 11I, section 7 for more details.] Since we
want our connection to be reducible to D for

1 £ 4 <1 the RH3 should not contain Terzs with X » 1.
So

Pi=0forx>1,121 (49)

while the condition for zers tersion is [ep. cit.],
-ty (50
Both these conditions are compatible with (47}, Thus
we get a subbundle W of I whose fiber is E':l{c‘-llfz_
Cheose any section of the same. QED
This proof is due te Willmere [38]. Using
the equations (43) and (50) above we can given znother

-y




proef of the fact that a Walker connsctlon must be a

Bott connectien (Frop. hl). Im fact if one puts [17],

ard,  ark
“in - ;IP“ = ;5‘1 * :Jrit = ’;fég' (51)
thon the curvature matrix is R
ﬂ§ - ﬂ’}uu" A ax® (52)

in the given cecordinates Hpaereaky compatible with
the foliation. Using (&8}, "gu -6 for Ls1,

J <1 e, ﬂj = 0 for these values. Using (%9) and
(50) omnocstmtkgh-nrerlhl. i1, and

k,8 £ 1y f.e., for i,§ > 1 the 2-forms n? are of

filtration » 1. QED
We call a connection which satisfies the
hypothesis of Cor. 42 & basic connection. PFor a linear
connection
Walker = basic = Bott.

-8o far we have looked for cohomological obaturction
by using Bott connection only. By proposition 41 it
seens reasonable to see if a Walker connectlon leads
to anything new.

Por this purpose we reformulate prop. 43.

Given a subbundle D = T let P = L{M) be the principal
bundle of frazes whose first 1 entries span D. the
group of this bundle is G { all phisms

7

B™ « 3™ keaping B} invarisnt)., The bundle of affins
framers A(M) iz & n-dimensional veotor budnle cver
L(M). Let P denote the part sitting over P, and §
the group of Fa It in clear thatq(§) =a@'(6)@ 2>
with @' (G) 2 Lie subalgebra of @'(5). Let g be tha
connection form and denote by a:a’ = aX(2) she

ganonisal form, i.e., for atangent vector X at

..-:m) of P where x €M and Spreneit, iz a
basis of Ty the vector eltx]al * eee + Gl 1les
under K. So u and & gives us a map al(s) (28 1z
and (f = @) and 0 give us a =ap 52(3) 2 A%(F). Thus

we get an algebra morphism. W(G) “"‘_'_ﬁ‘ﬂ] L(F). Again

we have the connection A{G) (1{.‘} A(P) .and the related

(=1 €0

Weil map.”

Propesition 4. D is involutive if and only
if the algobra merphism W(E) (W28 4(p) can be 11fted
+to the Well =map '—'la'} @ J.[;} for soze ge.

Proef: By prop. 3.4, Kobayashli and Nomizu, section 3,
Ch. III [17] the curvature () of (w,8) sits over
0 +® where @ 1s the torslon. Now we use prop. b1 QED

Suppose more generally that on L{M) wo have a
torsionless connection which is reducible to a sub-
btundle with fiber ¢, a subgroup of GL(m). Then n

Bay that we have a torsionless G structura o + The
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study of such structures covers most of gecmetry. (Hy
prop. 43 a follatien is such a structure.) The
probles of finding necessary conditions fer o torsion-
less G-structure to exist is of great intersst. (The
Bott vanishing thecrem s.:hould be zeen in this context.)
According %o a result of Cartan, Kobayashi

ate. [18] if ¢ is one of the groups

GL(=), O(m),y CO(m) s GL(1,m), GL(L,m4k} (53
we always have such torsionless connections (affine,
1 flews, parasetrized
£lows pectively). Such str shall be called
trivial since there is no obstruction. Conversely it
is known also that if all @ structures on M can be
mads torsionless, than, for m > 2, G must lie in
the above list (53). In fact for the group O{m) of
automorphisms of 5" preserving a non=degenerate
gealar product we know mores every O(m)-structure
can be made torsionless by a unique connection and
conversely if every G structure on M adnits such a

ri =al

unique zero torsion connection, then & = O(n).
Another famous torsicnless structures sccurs

when G i1s cospesed of matrices of the type {_"‘n i .

This is called a lex structure on M. We
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= i3 even; this subgroup of SL(=) is called GL{%.Q}.
Again, if out of theme matrices we take those which
are orthogonal we get a gtill smaller group U(H). A
torsionleas structure with this group is cnlled a
Kaehler atructure. It is known that then we have a
closed 2-forz which represents an imtegral cohomelogy
class if and enly if the manifold is algebraic
{Kodaira's thaores). These exanples thus show the
great importance of torsienless G-structures.

By an integrable G-structurs wa mean that we
can cover M by charts so that the jacsbians lie in G.
The Probeniug theoren thus says that a torsionleas
GL(1,=) structure is an integrable GL(1,m) structure;
while the Newlander-Nirenberg theorem makes the sazme
statezent with the subgroup GL(3.0). But & torsiosless
0(m)-structure is of course not integrable: we nsad
the vanishing of another tensor, the curvatuce TORIer.
The general problem of finding nscessary and sufficient
conditions for the integrabllity of a G-structure {in
terlns of vanishing of certain tensors) has teen

pursued by Spencer, Guillemin [14] and others.

2. In this section we will show how the existence of

certaln terslenl G a8 us ¢ gonstruct

eertain Z-parametrices.
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4. As before, let i be follated. So we can
assume that we have a torslonless OL(1,m) structurs
on M. Now the Lle algebra §L{1,=) of this group
consists of homomorphisas 2% + &° which preserve Rl
(¥e think of 2° = k@ E° &s usual.) We now define a
gpaller Lie algebra §(1,s) conslsting of
homorphisms B° - BT whose lmage lles in BL. e asguze
that wa have & tersionless G-structure on M whore G
ig a lie subgroup of GL(m) whose lie algebra lies in
§(1,2). (Bwamples If thers exist o globally defined
vector fields ¥;....%, tramsverse to the foliatien
guch that wa can cover M by neighborhoods
xl"""‘l“‘lﬂ""'*ﬂ such that gq...-.g-i-i span
- il.....gg = %) Let q be the principal
bundle in question (it is a sub-bundle of the bundle
P of frames compatible with the foliatien)s then we
shall follate § by pulling back the foliation oo M.
Points of q ara of tha typa (x:ul.....om)

b, L—
£

where x €M and gy peeerty is & tangent frame for '3‘.
For each 1€ 5‘ we now define a vector field +* on Q
in the following way: n* a% (xwl,..-.om) is the
norizontal vector which lles above m ey + eee ¥ T8,
{In the terminology of Kebayashi and Neomizu, m* is a

canonical horlzental veeter fleld.] Let us suppose
that our cennectlon ia gompleze, L.e., that the vecter
ficld n* generates a one paramster group P(mt) of
diffeomorphisas of Q. (t €8, Plaz )« Plnty)
- ?lrﬂi1 + ntz]). Fer t = 1 this gives the diffsc~-
morphism F(n) of qQ.

Proposition b5, Por each n6E™ the diffeo-
morphisa F(n}i1Q + § maps leaves inta leaves.
Frooft For cach A€ Q{l,:} we get a canoniczl vertical
voctor field A* in Q (see e.g., [17]). And i
Apasessdy i 8 Basis 47,047 shall be a basis for
the tgt. space of fibres. 35y Prop. 2-3, Ch. III of
[17] we have the relatlon [A*,7*] = (An)*; snd since
torsion 1s zoero we see from preop. 5.4, Ch. III of
[17] that [4],n3] is always vertical. Since
(4] = Lia ELmtlA%= 8% ang anc gt the first

cquation tells us That F(ns) maps A" into a vector

%gt. %0 a leaf of Q. The second says that rtqzt;l

mapa n; (for n & R_l) inte a vector t5% %o a leal of

Q. Thus the propesition follows. QED
Now on @ we have a complese gliobal parallelism

(in the sense of p.S56) given by )

Fig"a §(1,3) » c™(1Q) (54)
where F(n) = m* for n¢ & and F(a) = &% for
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Aég{l.s.). By the above ::'nposluon we have :a::
that Fim) € CT(TQ) if €A+ on t}: other han
negh, (A%, = (Am)® wish Ane gy and if .
Ay €G(Lm)s Ay € §iz,3) we nave (143 - L[4y 0A5]
with [Agehz] €4§(1,m). Thus the vertical vector
ficlds A® also presarve the faliation of Q, oo tha
ipage of (54) lies in ¢j(e). Arguing as on ppe 63
ppe 68 we ovtain -

oposit L6, Suppose that 8 compact mani=-
fold ¥ has & torsionless g-structure such that the
140 algebra § < §(1,m). Let Q denote the principal
bundle, and let the gonnection be complete. Then--
with respect to the induced follation on Q--we can
find a z-parametrix Ay B ag by putting

s J _|': (3, Blet)w)f(e)asdr  (55)

FE@g (1) at
Here F(8) = Py{8) if pole) = the ons-parametar group
of F(6) in (64). Thus we have 1-5 = dp+ pd where
+the smoothing eperatar Ag S hq is glven BY

s = %[ HONTOLE (56)

g1 _
Hewe f£(8) is & smooth func¥ion with sufficieatly
small support near the zere of e § (L)

We have already pointed out in propositions 21
and 27 the relatlon between the exlstence of a 2-
parazetrix and finiteness and Serre duslizy. Note
that although Q i not compact, its echoselogy can be
ealculated using forms having a ce=pact support: and .
the map s will bo compact on tha space of such forms.
Another remark to be made is that E,°(q) = 25O,
Henge if the foliation arises from a torsicnless G-
strusture with §e §(1,m) then E3'°(5) is finite
dimensiocnal.

b. We now conslider the more general case of a
torsionless GL{l,=) atructure (ile.. a foliation), with
the bundle P of frames. Hote that §L(1,=) deccmposes
a8 %(1.:] =] 5:.(.«.,1 where both parts are Lie algetras
and the first part is preserved by brackeis with
regpect To the sscend. Chasse any basis Ayreeeidyns
51""'B¢2 of L{l,=) agreeing with this d.ecm:pesi-
tion. Also choose a basis Mgasasayt [4

+af, of

B egreoing with the decesposition 2= = B @ E°.

We define T to %e the 1+1m dimensional plane field
spanned by Asessshy i Tiaeessn o+ Then the following
proposition gives us a 1+ 1= dimensicnal foliation
of P sitting over the foliation of Mu

: Proposition 7. The plane field D is

-

10%
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involutive.
Proofs e kaow that [41,A3] = [4grhg]" and that
[A", "] = (a)®. So it only remaing to show That
Af myamp € 2> then [rym3] is & linear combination of
the v} and A} Since torsion is zere, by 54, 11T,
[17]s this iz & vertical veetor. Hense 1t is emecugh
to show imtw{[n;.nali lies in §{1,m). Here w is
the connection form, and obeys w(A®) = k. Bub ny iy
being herlzontal vectors we see from 5¢3,11,[17], that
Wil m3]) = -Fleg. ) (s7)
whera (] is the curvature form. Zut the cxc part of
(1 is of filtration > 1 by Prop. ¥1. Hence the right
side les in §(L.=). QED
Now the gquestion arises whether Pin)sP =+ P
preserves this foliatien of P« In general it cannot.
But if the nermil bundle D' is stiff (see section 19) .
then this is so. Then one can agsume that our torsion=
Jess commection is invariant restricted to Bt
propesition 48, F(n)iP + P maps leaves into
Jeaves for each n¢ %, 1f the connection is imvariaat.
Alao the saze statement is true for tha diffoomerphisms
F(A)IP + P for any A€gL{l,m). (Pe(a) voing the 1=
parameter group of A'-)
proofi 1In this case the cxe part of the curvature is

—_————————

of filtration » 2. 56 the RHS of (57) lies in §l1,3)
it rksgl and nze;“. Hence [11:.!',}] is egual to A®
for some A€ §i1,m). Again if A€ §(1,5) and n¢ &%
[4%, ] = [An]* with Ane gl. These 2 rezarks give
the first part. On the other hand i AG'QI.IJ..:]
and ne ﬁl then [r*,A*] Lies in D being equal to
~{am)®. And if 4, €L(1.3). 4;€4(1,n) then
[Ayhp) € §ilim)-mor §(1.m) 1s an ideal ingL(l,z=).
This shows that [4],A3] €D, And vhus we lLave whe
second part. QED

Note that follations which can be supplied
with @ bundle-like metric are a t‘o:-uori invariant,
btut the converse is Aot trus.

proposition 49. In case the follatien is in-
variant we can find a szoothing 2ap Ap .’g,\r which
preserves the follation {tgt. o T) tegether with 2
paraemtrix ap B4y waich disturbs the filtraslen by

one unit. These are related as usual by 1-s=dp+pd.

proofs Use the formulae (S5) and (56) wizh F@§(%.=).

roplaced by E-®EL(1,m) together with the discussion
of pp. 6368, QED
Again this Z-parametrix will have the faziliar
garding the finit

of the E, terzs
of the foliated manifold P.
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Let us notice that prop. 48 implies that all
the leaves in P are diffesmorphle to sach other. In-
stead of P we could work in the bundle P' of frazes
mod D (i.e., the principal bundle of T/D), whers this
foliation would collapse to the horizemtal le
dizensienal foliation; for each né g the canonical
vector field n* in P* will preserve this foliation.
Thiz ylelds a theore= of Reinhart [27], Moline [21]s

any fo on Wi an _be provided with a cg

Anvariant connsction can be covered by another folis-
tion of the same dimension with diffecmorphic leaves.

e. Lot P be & principal btundle with graph G
sitting over M. Now G acts freely on P from the right,
and so for each a€G we have a diffecmorphism.

A 1P =+ Pu We denote by Ap the vector space of smocoth
forma on P, and by A; the subspace of pight lnvariant
forms, i.e., forms y such that Ajw = w for all a€G.
Clearly if Riw = w then Ajdy = w, =@ Ag is 3 subsomplex
of Ap- .
How let us equip G with a left invariant
normalized Haar measure p(g). Thon we define a lincar
2 15 5 ag ,

Ay = j'n Ryuas(e) (38)
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{We will assuze for the time being that G is cespact--
which is a severe restriction. Later on these
definitions will be amended for more general cases.)
® . o
Nete that A% (avy) '[c g apuls)
» - -
- & ix‘m(s) - fa Ra‘lu)uilg)a as the measure is left

invariant, and 30 equals Avg: thus Avy is
right-invariant as stated above. Alsoe froz (58) it
is elear that
afAvg) = Avidu) (5%)
It is clear also that Av is a continuous map.
Suppose given a parametrix for hgt i, 2
mapE A -i"-_;. Ay such that s is smoothlng and

gt
1-5 = dps+pd. Then we can define 2 3ps Ay =} Ap BY
o

8" = AV p» By virtue of (58) it is clear that we
will still have 1 -8" = dp' + p'd, and also s' will
be & smoothing map. In other words by cozposing with
Av we can turn a parazetrix for ,1\? inte a parametrix
for hg-

' (When G 1s not compact we take & Haar measure
on G and replace (58) by

Avg = e —— [ &Pup( '
£ s lag “og goute) 187)

where ‘ix is a finitd me2sured subset of G which + G
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ag L ==, Clearly the limit will be finite if we
work only on bounded forms in P, i.e., we have @ m=ap
,\vu\:dd « age The equatien (59) will alse hold. By

composing with Av we'll be able to change any paramstrix
bad
P

on 4 to one en AG.J
We new return to the case which was being
treated abova: M is foliated, P is the principal
CL(1,m) bundle of compatible tangent [ramzes and ia
also foliated by the foliation of prop. &%7. Le% us
assume that we can find a parametrix (s,p) of P such
that & preserves the filtration while p destroys it by
one unit (we accomplished this when M carrlied a
complete invariant comnection). Then the follewing
proposition will allew us the same kind of parametrix
on Age

Propoaition §0. The map Ap ﬂ Ag Precerves the
filtration given by the foliation of prop. 47.
Proofs It will suffice to check that R‘ai’ + P
preserves the plane field D, for each g€G. For
neg, Bl = (670" (2.2, 1L, [a7]). since
gt eGL(1,m), 700 will Lic in B also. On the other
hand if A€§(1,z), then A" €D, Let w be the conascs
tion form on P. We have w(RgA") = ad(g™ ula")
- ad(gl)a. (By 1+1, II, [17]). The last ters lies

in q(}..n} as q(l.:] is an idezl in g}.(l.z]‘ Hence the
vertical vector A-a* lles in 0. QED

Let us denote the speciral sequence resultlng
from Ag by Br':PG’ « The existence of a 2-paramstrix
for Ay glves us finiteness informatien about 2:05:0.
o.g., that £3°%(F,) is finize dimensional.

A
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