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            § 1.  We are by now blasé about linear maps f: V → V. Yes, their utility is 
undisputed—to cite just one famous instance, the dimension of the kernel minus that of 
the image of an exterior derivative, a linear map with f2 = 0, rather magically yields the 
‘number of i-dimensional holes, i ≥ 0’ of the underlying smooth manifold—but, of and by 
themselves, you might well ask, are these homely objects worth a whole talk? 
 
             It is the possible infinite dimensionality of V that imparts interest to the topics I’ll 
be considering, but I am not going to start with a topology on V and focus on maps f 
continuous with respect to it, that is, this is not going to be functional analysis.  It will be 
pure linear algebra.  Nevertheless, some topology and (co)homology will enter rather 
naturally (see §§ 9-12) before this topologist of sorts is done doing this algebra. 
 
             A researcher rash enough to venture into a new area is bound to rediscover as 
much, if not more, than what he discovers.  My fate was no different (see Appendix 1)2.  
However the new light which such an interloper brings can be revealing. You are going 
to find this algebra talk uncommonly pictorial, and I feel that these pictures—definition 
below—constitute  perhaps the right way of looking at this bit of algebra.  
 
             § 2.  I was led to them a year and half ago starting with an easy exercise: does 
ker(f) always have an f-invariant complement?  Here, by ‘complement’ of ker(f) we 
mean a vector subspace C such that ker(f) ⊕ C = V, and by ‘f-invariant’ that f(C) ⊆ C.  
The answer to the exercise is no.  For example, for any nonzero f with f2 = 0, because f 
maps any complement of ker(f) into ker(f).  More generally, for a nonzero f having some 
iterate fn = 0 where n is least—for  example, for the map f(x1, x2, … , xn) = (x2, x3, … , xn, 
0) of n-space—ker(fn-1) does  not have an f-invariant complement. 
 
             At this point, Dinesh Khurana had asked: does Kf = Un

ker(f n) always have an 
f-invariant complement?  This new question was more challenging, the answer however 
was still no.  Figure 1 shows the counterexample that I found after a few weeks.  Here, 
                                                 
1 January 10, 2007: this write-up may also be construed to be an outline—not in its final form, e.g., the 
mentioned Appendices are lacking—of an intended joint book with Khurana and Madahar.   
2 This history is intricate, for example, there is a largely forgotten—and not easily decipherable, for it has 
many gaps and mistakes, some quite serious—1917 book of F. Levi, which deserves priority for many 
ideas and results now routinely but wrongly ascribed to others: in November, 2006, I realized that  “my” 
own counterexample, Figure 1, was also implicit in it! 



and in all other pictures, the set of nodes forms a basis, and the arrows show how the 
linear map acts on these basis elements: each node has just one or no arrow issuing out of 
it, in the former case it is imaged to the next node, in the latter to zero.  Many other 
pictures, and concomitant informal but self-explanatory terminology, will be used 
profusely from here on, however I’ll postpone the further discussion of this particular 
picture for quite some time (till § 9).     
   
 

 
 

Figure 1 
 

 
            § 3.  Let’s first assure ourselves that Dinesh’s question has no finite dimensional 
counterexample. Note that if a term of either of the monotonic sequences,  
           

0 ⊆ ker f ⊆ … ⊆ ker fn ⊆ ker fn+1 ⊆ …, 
 

V ⊇ im f ⊇ … ⊇ im fn ⊇ im fn+1 ⊇ … ,  
 

is stable, that is, equal to the next term, then by applying f-1 or f repeatedly we see that it 
is equal to all subsequent terms.  Also, it is always true that if ker fn is stable, then ker fn 
∩ im fn = 0, because, if there were a nonzero fn(v) in this intersection, then f2n(v) = 0 
contradicts the assumed stability.  Now invoke the finite dimensionality of V.  It implies 
that the sum of dim(ker fi), a non-decreasing function of i, and dim(im fi), a non-
increasing function of i, equals the constant dim(V).  So, in this finite dimensional case, 
ker fn is stable iff im fn = 0 is stable iff  ker fn ⊕ im fn = V, that is, now Kf ⊕ If = V where 
If denotes In

fn(V).  In fact this stable ker fn and im fn are the unique f-invariants 

complements of each other, for, if C is f-invariant with ker fn ∩ C = 0, respectively C ∩ 
im fn = 0, then C ⊆ im fn, respectively C ⊆ ker fn.  This extra point can be useful. 



 
            For example, it implies that Kf has a unique f-invariant complement even under 
the much weaker hypothesis that each orbit {v, fv, f2v, … } spans a finite-dimensional 
vector subspace W.  For, the intersection of Kf with W equals Kf⎟W where f⎟W denotes 
the restriction of f to W, and has in W the unique f-invariant complement If⎟W.  On 
account of this uniqueness, the union UW

If⎟W is itself a vector subspace, the asserted 
unique f-invariant complement C of Kf in V.                
 
            A natural question arises: is there a more convenient description of this unique C?  
The obvious suspect If is now easily ruled out, for example, the left infinite string 
 

…… →•→•→•→•→•   
 
shows we might even have Kf = If.  The key is to observe that our orbital hypothesis is 
the same as saying that f is locally algebraic, i.e. that,  for each v we can find a nonzero 
polynomial c0 + c1f + c2f2 + ..  of f which kills v, and then exploit—arguments below—
the fact that if a bunch of polynomials kill v, then their h.c.f. also kills v. 
  
            Since f is one-one on C, its v’s can be killed by polynomials having nonzero 
constant terms, and since such polynomials are one-one on Kf  this subspace contains no 
such nonzero v.  Thus C coincides with the invariant subspace consisting of all v’s killed 
by polynomials not divisible by f.  But why stop here?  Why not not split off a further Kϕ 

from C where ϕ is a  prime polynomial other than f, and so on?    This indeed works like 
a charm and gives  the canonical direct sum decomposition,  
 

V =  ⊕ϕ Kϕ , 
 
where ϕ runs over all prime polynomials with highest degree coefficient 1. The 
components vϕ ∈ Kϕ of any v ∈ V are given thus.  Take the polynomial μ of minimum 
degree with highest degree coefficient 1 which kills v.  If a prime polynomial ϕ occurs k 
times in μ then vϕ is the element of Kϕ mapped by the monomorphism μ/ϕk of Kϕ to 
(μ/ϕk)(v).  For almost all primes ϕ one has k = 0, then (μ/ϕk)(v) and so vϕ  is zero.  That v 
- Σϕ vϕ = 0  holds follows by noting that the left side is killed by each polynomial μ/ϕk

,  
and so must also be killed by their highest common factor, which is 1. 
 
            Dinesh’s question has a positive answer (see Appendix 2) under some other 
finiteness hypotheses also, notably if ker fn or im fn is stable, and the proofs are akin to 
those above.  These special cases can mislead one into thinking that the answer might be 
always yes.  Indeed, interest in Dinesh’s question was stimulated by an emailed misproof 
to this effect by a well-known U.S. algebraist,  and even a year after the above 
counterexample had been circulated, another well-known U.S. algebraist was still toying 
with a misproof.  On the other hand, counterexamples were not hard to find, once the 
pictorial approach being pushed in this talk had been adopted. 
   



            § 4.  The crowning glory of our undergraduate linear algebra courses is Jordan’s 
similarity classification of finite dimensional complex linear maps.  The first part of its  
proof is the above canonical direct sum decomposition.  Due to the finite dimensionality 
of V only finitely many ϕ’s occur in this formula, and since coefficients are algebraically 
closed (see Appendix 3 for Jordan theorem for non algebraically closed coefficients) 
these are all of degree one—ϕ = f - λ, where λ runs over the eigenvalues of f—and so f 
on each summand Kϕ is known once we know ϕ: Kϕ →  Kϕ .     
 
              The job is thus to classify nilpotent maps, i.e., those with some power zero. Here 
pictures enter naturally, for all Jordan’s theorem says is that, any finite dimensional 
nilpotent map admits a basis on which its action gives us a disjoint union of strings, for 
example, Figure 2 shows such a Jordan basis of a 23-dimensional nilpotent map. 
 

 

 
 

Figure 2 
 
            The correlation with the usual formulation is obvious.  If say Figure 2 depicts ϕ = 
f - λ: Kϕ →  Kϕ then what we are saying is that the matrix of f: Kϕ →  Kϕ with respect to 
this basis of nodes is the direct sum of  7 Jordan matrices—λ’s on main diagonal, 1’s on 
the diagonal above it, and 0’s in all other places—because each of the 7 strings 
contributes a Jordan matrix of the same size as its length. 
 
            This visualization also suggests an easy going-up proof.  The required basis is 
constructed in steps using the fact that f induces a surjection of (im fi)/(im fi+1) onto (im 
fi+1)/(im fi+2) for all i.  If fn = 0, n least (one has n = 5 in Figure 2) in Step 1 we simply 
choose any basis of im fn-1.  In Step 2 we use this surjection with i+2 = n to first pull this 
basis to the same number of elements of im fn-2 which stay linearly independent mod im 
fn-1, and then augment this linearly independent set to obtain a basis of im fn-2.  In the next 
Step 3, we’ll use the surjection with i+2 = n-1 to similarly lift this basis and then augment 
the lifted linearly independent set to a basis of  im fn-3, etc.  



 
            Alternatively one can use the fact that f induces an injection of (ker fi)/ (ker fi-1) 
into (ker fi-1) / (ker fi-2) to give a going-down proof indicated in Figure 3, which is Figure 
2 redrawn so as to make the bottom nodes flush.  Now the requisite basis is constructed 
by starting with elements representing any basis of (ker fn)/(ker fn-1), then we inject and 
augment to get elements representing a basis of   (ker fn-1)/(ker fn-2), etc. 
 

 
 
 

 
 

Figure 3 
             
             Noting how these pictures correlate with Young diagrams we also see at once 
that the number of similarity classes of nilpotent maps of a finite dimensional vector 
space V equals the number of partitions of dim(V). 
 
            § 5.   Now lets drop the finite dimensional hypothesis, but still insist on V = Kf, 
i.e., the map f is locally nilpotent, each element v killed by an f n(v), power depending on 
v.  Can we still find a basis—we  know, thanks to the axiom of choice, that bases exist—
on which action of f gives disjoint but possibly infinitely long strings?   
             The answer to this question is also no.  For example, the linear map depicted by 
Figure 4 (note that this is Figure 1 minus the horizantal string) cannot admit a basis of 
disjoint strings.  For if it did, and all strings were finite, then we would have If = 0, while 
if there were an infinite string, then If would be infinite dimensional; but If , the span of 
the bottom node, is one-dimensional. 
 



 
 

Figure 4 
 
 

            This prompts a modified question: maybe all locally nilpotent maps f are graphic 
admitting at least some picture as basis, i.e., a basis S such that the set S∪{0}is mapped 
by f into itself?  We’ll see towards the end—in  § 12—that the answer is ‘no’ and that the 
problem of characterizing linear maps which are graphic is deep and very interesting. 
             
            § 6.  In the finite dimensional case this weaker statement carries almost the full 
force of Jordan’s theorem, for, from a tree basis S we can very easily get another which is 
a disjoint union of strings.  All we have to do is strip some branches off our tree(s)!  Yet, 
a modicum of care is needed, the next picture illustrates this. 
 

 
 

Figure 5a                                                                   Figure 5b 
 
 

            It is invalid to strip off a longer branch, for example, the maps of Figure 5a are 
dissimilar, only the 5th power of the first is zero, while the 4th power of the second is zero.  
Otherwise stripping is valid, in fact as the pictures of Figure 5b depict, the map remains 
the same if the nodes of the stripped branch are taken to be the differences of the old 
nodes and equidistant-from-fork nodes of an equal or longer branch still remaining at the 
fork (in matricial language a ‘row transformation’ has been done). 
 
            In other words, we insist from here on that stripping not alter the height, i.e. the 
largest α such that fαV contains it, of any node. (For example, in Figure 2 the seven top 
most nodes have height 0, the six in the next lower level have height 1, … , the bottom 



most two have height 5, and none has height 6.)  Therefore, two finite trees S and S’ are 
similar if and only if there is a height preserving bijection between their nodes.  For, by 
stripping, any tree basis can be made a Jordan basis, and if hα = dim(fαV/fα+1V) denotes 
the number of height α nodes, the number kα of height α strings is given by kα = hα – hα+1. 
(In Figure 2 the decreasing sequence of h’s was 7, 6, 5, 3, 2, 0, its successive differences 
1, 1, 2, 1, 2  give us the sequence of k’s, and adding the k’s successively in reverse order 
to 0 we can recover the h’s.) The k’s are also invariants, for it is easy to check  
 

kα = dim(kerf∩fαV/ kerf∩fα+1V).   
 
             In the infinite dimensional case below, hα – hα+1 (difference of cardinals) seldom 
makes sense, so above formula will be our definition of kα.  Moreover, α will run over all 
ordinals, so we’ll now recall these, and then define  fαV for any ordinal number α.       
 
            § 7.   In primary school, the finite ordinals α are often introduced as strings of 
beads [α]—see Figure 6, the initial bead will represent 0—the next ordinal being [α+1]  = 
[α]→ •, the notation signifying ‘lay a new bead after the last bead’. 
 

 
 

Figure 6 
 
 

            The set of finite ordinals cannot be augmented further by this construction. 
Whenever so stuck, we ‘lay a new bead simultaneously after all the last beads’ to 
construct the next limit ordinal.  So, Figure 4 is the beads’ picture [ω] of the first infinite 
ordinal, [ω+3] =  [ω]→ •→ •→ •, and 2ω+2 and ω2 are portrayed in Figure 7 below. 
 



 
 

Figure 7 
 

            Coming back to a linear map f: V → V, note that the increasing sequence  ker fn 
starts with the subspace 0, and each subsequent term is obtained by applying f -1 to the 
previous term, while the decreasing sequence im fn starts  with  V, and each subsequent 
term is obtained by applying f to the previous term. If we apply f -1 to the union Kf  of the 
increasing sequence we only get back Kf , however, applying f to the intersection If of the 
decreasing sequence we can get something strictly smaller.  So we’ll put fω(V) = If, and 
the subspaces obtained by applying f repeatedly to If are denoted  fω+1(V),  fω+2(V),  
fω+3(V),  fω+4(V), …, after this comes the intersection f2ω(V) of all these, etc.   
 
            This transfinite sequence fα(V), α any ordinal, ceases to be strictly decreasing at 
some ordinal α  = λ, for, by choosing an element in each term which is not in the next we 
obtain a linearly independent subset of V, and such a set has cardinality at most dim(V).  
We use λ = λ(f) to denote the least such ordinal and call it the length of f. 
 
            We already have in hand rather canonical examples showing that length can be 
arbitrarily big.  For the locally nilpotent linear map fα: Vα → Vα (over any field of 
coefficients) defined by the beads’ picture [α] of the ordinal, (fα)α(Vα) is the one-
dimensional  span of the last bead, so λ(fα) = α + 1; and, if we knock off the last bead 
from  [α], the new picture defines another such linear map having length exactly α . 
 
            The stable part, i.e., the restriction to fλ(f)(V), of f is surjective; conversely, given 
any α, and any surjective linear map g: W → W, here is a construction of an f with length 
α and stable part g.  Make nonzero elements of W—or only some chosen w’s such that  
the union of their orbits {giv : i ≥ 0} spans W—final beads of disjoint copies of [α].  
Treating the other beads of these attached disjoint pictures as linearly independent, let V 
be the linear span of W and these, and let f: V → V be the linear extension of g which 
acts on these other beads as per the arrows of their pictures.  
 
            For the locally nilpotent case V = Kf , the restriction fλV→ fλV is graphic, in fact  
it is easily seen that any disjoint union of s-∞ = dim(kerf ∩fλV) left infinite strings …•→ 
•→ •  forms a basis whenever their last nodes form a basis of kerf ∩fλV.   Moreover, this 
stable part has an f-invariant complement.  Zorn’s lemma tells us that there is a maximal 
f-invariant subspace C of V with fλV∩C = 0.  We assert fλV + C = V.  If the left side 



were smaller,  then, using local nilpotence, we can find a v ∈ V outside it, whose image 
f(v) = (u,c) is in it.  We can also arrange u = 0.  Otherwise, we just replace v by v-
u’where u’ ∈ fλV is such that f(u’) = u. But then the bigger f-invariant subspace C’ 
generated by C and v also satisfies fλV∩C’ = 0, which is impossible. Thus f is known, 
once we know s-∞ and the structure of the locally nilpotent map induced by f in the 
quotient V/fλ(V) ≈ C.  This last map is reduced, that is, its  stable part is zero, so we may 
now consider this subcase only. 
 
            § 8.   The stripping of §6 generalizes to show that if a reduced locally nilpotent 
map has a graphic basis, it also has one in which forks occur only at nodes whose heights 
are limit ordinals, so finally the finitely many other nodes of any string that runs between 
nodes of such heights must have consecutive heights.   Assume only partial stripping has 
been done, that is, there exists still a consecutive heights string from a limit ordinal height 
α node v-n with last fork before one at a higher limit ordinal at the vertex v = v0 of height 
α+n,  … → v-n→ v-n+1→ … → v-1 → v0 = v → …. Take any another branch coming to 
this fork, say … → u-2 → u-1 → u0 = v.  We strip this off to the disconnected terminating 
tree … → (u-2 – v-2) → (u-1 – v-1).   Here u-t signifies any of the nodes of this branch 
which is t arrows behind v.  For t ≤ n its height is no more than that of v-t,  for t > n we 
take care to choose higher height v-t’s, also t arrows behind v, on suitably chosen 
corresponding branches ending at the height α node v-n.  The unchanged nodes and these 
form a new basis, in which the same map has the indicated new picture.  
 
            In such a normalized picture let Sα,n – here α is 0 or a limit ordinal and n is a finite 
ordinal – denote the set of all strings of n arrows issuing out of nodes of height α ; the last 
node of such a string might be hanging free as a terminus, or else might have an arrow 
going out to a node whose height is a bigger limit ordinal than α (this height may be 
bigger than α+ω).  Since the cardinality of each Sα,n is obviously equal to the invariant 
kα+n, it follows that two normalized pictures arising from the same map, or even from two 
similar –  i.e. admitting a linear isomorphism commuting with the two – maps necessarily 
have equally big sets Sα,n.  Before checking that this necessary condition is also sufficient 
for similarity, we pause to look at a few simple examples.      
  
            1. In case the length of the (reduced locally nilpotent and graphic) map is at most 
ω, there is just one normalized picture: cardinality kn sets S0,n of strings of length n 
hanging free, à la classical Jordan, and the map has length ω iff the n’s are unbounded. 
 
            2. For (the map defined by) [ω] the invariants are k0 = 1, k1 = 1, k2 = 1, k3 = 1, k4 = 
1, k5 = 1, …; kω = 1 (always kα = 0 for α ≥ λ, the length).  Another normalized picture of 
the same map is obtained if we detach or strip off the string [n]  – to see this, let nodes of 
detached strip be original nodes minus ‘equidistant from the height ω node’ nodes of a 
longer string, say [n+1] – indeed, we can likewise detach any number of [n]’s, provided 
we take care that arbitraily long [n]’s will remain undetached. 
 
            3. Now lay a bead simultaneously after the last beads of all the even finite 
ordinals [n], the length is still ω+1, but now k0 = 1, k1 = 0, k2 = 1, k3 = 0, k4 = 1, k5 = 0, …; 
kω = 1, so this map is not similar to the last example.  And both these maps are dissimilar 



from that obtained by laying a bead simultaneously after all the odd [n], for then k0 = 0, 
k1 = 1, k2 = 0, k3 = 1, k4 = 0, k5 = 1, …; kω = 1.  The disjoint union—Figure 8—of  the last 
two pictures, has once again the same length, but is in yet another similarity class for now 
k0 = 1, k1 = 1, k2 = 1, k3 = 1, k4 = 1, k5 = 1, …; kω = 2.   We get exactly the same invariants  
as these, if instead of even and odd, we use some other partition of the finite ordinals into 
two infinite subsets.  To check that the map is similar detach as above, from a component 
having arbitrarily long odd [n]’s, all its even [n]’s, then attach these to the other 
component, now detach from this all the odd [n]’s and attach to the first component. 

Figure 8 

 
            In general, by suitably detaching and attaching  strings, a normalized picture of a 
map can be replaced by any other having equally big sets Sα,n.  Assume otherwise, and 
let β be the smallest height at which only some proper maximal subsets of nodes has been 
made ‘good’.  That is, some ‘bad’ node v remains with the totality of strings terminating 
v not of a desired ‘kind’, i.e. does not have the specified cardinalities of attached strings 
with last nodes of specified heights having as upper limit the height β of v. If modulo a 
subset of strings having a smaller upper limit, this ‘kind’ is already available on a single 
available (not already made ‘good’) node, detaching superfluous stuff from it we could 
have made that node good.  So only subsets with smaller upper limits are available in 
various available nodes, but then these could have been safely detached from each of 
these, and then attached to a single node.  It follows that there is no such ‘bad’ v..    
 
            Thus the similarity class of a graphic reduced locally nilpotent map is determined 
by the invariants kα.  Also we have an abundance of examples, any picture that terminates 
and does not have left infinite strings in it is an example, and we can draw hordes of these 
examples of any length we like.  Still, the very nature of these pictures tells us that the 
invariants satisfy some conditions.  The number of nodes of height α, a limit ordinal, is 
the sum of kα+n over all finite n.  The requirement of height tells us that, given a ordinal θ 
less than α we should be able to attach to each of these nodes a different string whose last 
node has height between θ and α, so the sum of all kβ with θ < β < α must be at least as 
big as the sum before.  It can be easily seen that these conditions are sufficient also, that 
is, we can easily build a normalized picture having the given k’s once they hold. 
 
            Thus we have a satisfying and extensive generalization of Jordan’s theorem, but 
an obvious lacuna remains.  We have not delineated the exact force of the hypothesis 
‘graphic’, that is, we have not characterized those nilpotent maps that are graphic.  
Towards the end I’ll give an example of a non-graphic reduced locally nilpotent map, and 
state such a characterization: it is necessary and sufficient that a certain cohomological 
condition holds.  This happens, for instance, if the dimension is countable. 
 



            Now, finally, we are ready to leave the locally nilpotent case, and return once 
more to our initial Figure 1.  This, and a host of other counterexamples to Dinesh’s 
question, will show that pictures are useful even now.  However, we note that there are 
rather obvious linear maps f which are not graphic, e.g., multiplication by a nonzero 
scalar λ other than 1 (but now, being zero, the prime polynomial f - λ is graphic).  Thus, 
though we won’t use these, there is room now for a more general notion, in which 
different arrows, even within the same component of the picture, can represent different 
prime polynomials of f.  In the locally algebraic case this is avoidable, for the canonical 
direct sum decomposition allows us to separate the various prime polynomials. 
 
            § 9.   If α = β+1, then fα(V) = f(fβ(V)), while for α a limit ordinal, fα(V) was   
defined to be the intersection of all fβ(V), β < α.   To see how  Kf  sits within V we need 
to look also at the analogous transfinite decreasing sequence of subspaces of the quotient 
linear map induced in V/Kf.  For α a limit ordinal, the α th term of this sequence pulls 
back to the subspace of V which is obtained by intersecting all the subspace Kf + fβ(V) as 
β runs over all ordinals less than α.  This obviously contains all translates of Kf that 
intersect fα(V), and in one important but special case it contains nothing else: if Kf has an 
f-invariant complement then                       
 

Kf + I
αβ <

fβ(V)  =   I
αβ <

 (Kf  + fβ(V))               (*)α 

 

for all limit ordinals α.  To see this check that, if V = Kf ⊕ C, f(C) ⊆ C, then we have 
fβ(V) = fβ(Kf)  ⊕  fβ(C) for all β, which implies that both sides of (*)α are Kf ⊕ fα(C). The 
examples below will show that any (*)α  can fail. Thus the dimension of the right side of 
(*)α mod its left side gives us a transfinte sequence of non-trivial invariants of the linear 
map f that measures how far its locally nilpotent part is from being a direct summand. 
 
            The first of these conditions (*)ω does not hold for Figure 1.  The span of the 
nodes on the its bottom most horizontal equals In

fnV, but only a codimension one 
subspace of the span of the nodes on any other horizantal line is in Kf, namely, that 
defined by the condition ‘sum of coefficients is zero’.  So the left side of (*)ω is a proper 
subspace of V.   On the other hand, the right side of (*)ω equals V.  Indeed, given any n, 
if we go sufficiently to the right on any horizantal its nodes—of course, no node of the 
picture is in Kf—are  all in fnV, so we have in fact Kf  + fn(V) = V for all n. 
 
            In the notation of § 7, Figure 1 is the same as [ω] → •→ •→ • …, that is, it is 
obtained by laying a right infinite string after the last bead of ω.  More generally, a 
similar calculation shows that, for any limit ordinal α, the condition (*)α fails for the 
linear map [α] → •→ •→ • …, while all other other conditions (*)β , β≠α, hold. 
 
            For each limit ordinal α let the α-adic topology on V be the one whose open sets 
are all translates of all the subspaces fβV, β < α..  In this topology the right side of (*)α is 
the closure of Kf while the closure of the origin is fα(V).  Thus (*)α is the same as saying  
Kf is quasi-closed in this topology, that is, it surjects to a closed subspace of the 



associated Haussdorff quotient topological space V/ fα(V).  Our counterexamples so far  
were non-Hausdorff, however there are Hausdorff ones too. 
 
            Draw in the first quadrant of the x-y plane a straight line having a positive slope 
m and let the nodes be all points on or below this line which have both coordinates non-
negative integers; and, if its y-coordinate is positive, map a node to the one immediately 
below it, otherwise, to the one immediately to its right.  The linear map corresponding to 
this picture—see Figure 9—has fωV = 0, that is, its ω-adic topology is always Hausdorff, 
however (*)ω holds for this map if and only if m ≤ 1. 

 
Figure 9 

 
            The left side of  (*)ω is now only Kf , and since it contains no node, it is certainly 
smaller than V.  On the other hand Kf does contain a codimension one subspace of the 
span of all nodes on any slope 1 line, namely, that defined by the condition ‘sum of  
coefficients is zero’.  If m is bigger than 1, then for any n, all nodes sufficiently to the 
right on any such line are in fnV, which shows that Kf  + fn(V) = V for all n, so the right 
side of  (*)ω equals V.   By sliding it down if need be, we can assume that the slope m 
‘roof’ of our picture has at least one node (if m is irrational it has only one node, 
otherwise infinitely many).  If m ≤ 1 it is easily seen that the span C of the orbit of such a 
node is an f-invariant complement of Kf , à fortiori, (*)ω must hold.   
 
            For m ≤ 1 we can go further:  some obvious stripping shows that the map is given 
by a disjoint union of strings (of which just one, the aforementioned orbit, is infinite).  
This is quite like what we saw before for any locally nilpotent map with fωV = 0, namely, 



that it can be represented by a disjoint union of strings.  However, for m > 1, our example 
shows that this need not be always so if the map is not  locally nilpotent.  
 
            § 10.   If the linear map f is graphic then the conditions (*)α guarantee that the 
locally nilpotent part is a direct summand.  The argument is sketched below..   
 
            We analyze each component, that is, a maximal subset such that any two nodes 
have a common successor, of a given pictorial basis separately.  There are five mutually 
disjoint  possibilities.  (a)  If the component has an arrowless node or a loop then this is 
necessarily unique, and is its ‘sink’, that is, everything finally drains into it. 
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The component is thus locally nilpotent, or, if it sinks into a loop with  t ≥ 1 arrows, its 
locally nilpotent part has codimension t, with as an f-invariant complement the span of 
the loop; indeed, we can strip everything else off the loop as a basis for the component’s 
locally nilpotent part.  (b)  The component contains a doubly infinite string of nodes … 
→ •→ •→ •→ •→ …  Now everything strips off from this as the locally nilpotent part, 
and has the span of this doubly infinite string as an invariant complement.  (c)  The least 
ordinal bigger than the heights of its nodes is ω, and moreover, the height of any node of 
its right infinite strings •→ •→ … is eventually only one more than the height of the 
previous node (note that two such strings of the component eventually coincide, so we 
need to check this condition for only one string).  By generalizing slightly the argument 
given before for the m ≤ 1 case of Figure 9 it follows that the locally nilpotent part strips 
off a suitably chosen right infinite strip whose span serves as its invariant complement.  
(d) If instead the height of the nodes of such a string frequently exceeds that of the 
previous node by two or more then, by imitating the argument given before for the  m > 1 
case of Fig. 9, it follows that (*)ω fails for the component, and so also for the map as a 
whole.  (e)  The remaining possibility is that the least ordinal bigger than the heights of 
the nodes of the component is a limit ordinal α bigger than ω.  If α = β + ω, (*)β or (*)α 
fails, depending on whether the height of a node of a right infinite string issuing out of 
any height β node is, or is not, eventually only one more than that of the previous node.  
If  α is not of the type β + ω, then (*)α fails. 



 
            Thus the conditions (*)α preclude the possibility that any component is of type (d) 
or (e), and for the allowed possibilities (a), (b) or (c) we have explicitly found an 
invariant complement for the component’s locally nilpotent part, their direct sum now 
gives us the required invariant complement C of  Kf .   
 
            Indeed, the proof yields a classification of all graphic linear maps satisfying (*)α . 
The invariant complement C ≈ V/Kf we constructed has as basis a disjoint union of s±∝ 
doubly infinite strings, s+∝ right invariant strings, and ct disjoint loops with t arrows, t ≥ 1.   
The rest of the given graphic basis was stripped off to a basis of Kf.  If this has s-∝ disjoint 
left infinite strings … → •→ •→ • we can further strip off from these a graphic basis of 
an  invariant complement - a reduced nilpotent map - of  their span in Kf.  As in § 8 we 
now  normalize this basis eliminating forks at non limit ordinal heights, and for each limit 
ordinal α, denote by  kα+n  the number of n arrow strings issuing out from height α nodes.  
The similarity classes are in bijective correspondence with the sets of invariants  { s-∝ , s±∝ 
, s+∝ ;  kα ; ct }.   The left and doubly infinite strings, and the loops, form a basis of the 
stable part fλV, with the left infinite strings alone spanning the locally nilpotent part of  
fλV, while the loops alone span the intersection of C with the locally algebraic part, 
which must coincide by §3 with the direct sum ⊕  {Kϕ : φ ≠ f}.  Thus, for such linear 
maps, this direct sum is exhausted by the periodic points of V, namely those whose orbits 
are finite, in particular, all eigenvalues of such an f are necessarily roots of unity.   
 
            It seems likely that one can drop the conditions (*)α altogether and even classify 
all graphic linear maps.  Indeed, if the locally nilpotent part of a component of type (d) or 
(e) is known to be graphic, then the component would be classified by the kα’s of this 
part, and the unique germ at infinity of the height sequences of its right infinite strings.  It 
may even be possible to push further still, and classify all linear maps that are graphic 
only in the general sense alluded to towards the end of § 8. 
 
            § 11.   Though components are prominent in the above arguments, their number 
is, as such, not  an invariant of the graphic map, because stripping can increase it.  This 
anomaly is removed by using an augmented picture: add a new node 0, and arrows to this 
new node from previously arrowless nodes (a very natural thing to do really, for it is S ∪ 
{0}, and not S, that is always mapped into itself by f).  The number of components of an 
augmented basis is an invariant of the graphic map, now stripping merely enlarges the 
component containing 0.  In particular, for a graphic linear map satisfying the conditions 
(*)α this is one more than s±∝ + s+∝ +  Σt ct ,  the component not counted in this sum being 
that containing 0, i.e., the locally nilpotent part.  So s±∝ + s+∝ +  Σt ct = β0, the zeroth Betti 
number—definition below—of  the one-dimensional simplicial complex determined by 
the arrows of the augmented picture, modulo its distinguished vertex 0.   
 
            Using coefficients from the underlying field—other coefficients are also useful—
the vector space of zero-dimensional chains C0 , the span of all the nodes mod that of the 
node 0, coincides with V.  On the other hand, the vector space of one-dimensional chains 
C1, the span of all the arrows (s , fs), coincides with the graph of f, that is, with the 
subspace of V ⊕ V consisting of all ordered pairs (v , fv).  The boundary of each arrow is 



its initial node minus its final node, that is, the boundary operator ∂: C1→ C0 is given by 
∂(v , fv) = v – fv.  If we identify C1 with V under the isomorphism that takes v to (v , fv) 
we can identify  ∂ = 1 – f : V → V.  Thus the  zero-dimensional homology mod 0 of the 
augmented picture is given by H0 ≈ V/im(1-f), its dimension is the aforementioned zeroth 
Betti number β0 .  The one-dimensional homology is given by H1 ≈ ker(1-f), the subspace 
consisting of all the fixed points of the linear map.  Its dimension is the first Betti number 
β1 of the picture, so dimension of the fixed subspace β1 = Σt ct, the number of loops in any 
pictorial basis; indeed, by taking for each loop the sum of its nodes one obtains a rather 
canonical basis of the fixed subspace.3  Note β0 = β1 + s±∝ + s+∝ , which suggests—even 
though the difference of cardinals β0 – β1 is not always defined—that s±∝ + s+∝  ought to 
be called the Euler characteristic of the picture.  This is an example of the index of a 
linear map, that is, dimension of cokernel minus dimension of kernel, a very important 
notion from functional and global analysis. 
 
            Since fn(S ∪ {0}) ⊆ S ∪ {0}, the same nodes span also a picture of  fn, whose 
invariants can be worked out in terms of the invariants of the picture of f.  The first Betti 
numbers β1(fn) turns out to be linear combinations of the invariants ct , and conversely, 
the ct’s are linear combinations of the first Betti numbers of the iterates of f.   In fact, 
essentially all the similarity invariants of f are homological in nature, however some 
more computations, which we won’t pursue here, are needed to fully justify this remark;  
instead, I will now conclude with some words about cochains and cohomology. 
 
            § 12.  The vector space C0 of zero-dimensional cochains, i.e.,  functions c from 
the nodes of a given picture into the field F of coefficients, coincides with the dual V* as  
each c extends uniquely to a functional on V, and the dual map f*: V* → V*  is given by 
‘pulling back’ each c under the arrows of the picture, i.e., (f*c)(s) = c(fs).  It is natural to 
consider analogous questions for this map too, for example, when exactly does the locally 
nilpotent part of f* have an invariant complement in V* ?  
 
            The support of a cochain c is the set supp(c) of all nodes on which it is nonzero.  
Since ker(f*)n consists of all cochains c such that all nodes of supp(c) have height less 
than n, the locally nilpotent part of f* is contained in the invariant subspace of cochains 
vanishing on nodes of infinite height. This easily reduces the above question to the case 
when the picture is merely a disjoint union of finite or right infinite strings. 
 
            For just one string with n arrows, the nth pull-back of any c is zero.  For just one 
right infinite string, the locally nilpotent part of the dual map consists of all cochains that 
are eventually zero, and, since f* is now onto, this has an invariant complement. From 
this, however, one cannot conclude that the same is true for the dual map of a disjoint 
union of such strings, because its locally nilpotent part can be much smaller than the 
direct product of the locally nilpotent parts of the dual maps of the strings.   

                                                 
3  We recall that ‘the number of i-dimensional holes, i ≥ 0’ alluded to in the very beginning of this talk is 
also, more formally, called the ith Betti number, and is defined similarly using the boundary operator ∂ of 
any simplicial complex triangulating the smooth manifold. 
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            Indeed, for the disjoint union of the finite ordinals, i.e., for Figure 10, the locally 
nilpotent part of the dual map does not have an invariant complement, in fact, the 
necessary condition (*)ω , i.e., Kf* + ∩n (f*)nV* =  ∩n(Kf* + (f*)nV*) does not hold.  The 
nth pull-backs comprising (f*)nV* are cochains supported on or above the horizantal y = 
n, so their intersection is zero.  Thus the left side coincides with the locally nilpotent part, 
which consists of cochains supported above some line with slope 1.  In particular, the left 
side does not contain a cochain c that is nonzero on a node iff the node is on a given line 
through the origin whose slope—1/3 in Fig. 11—is  a positive rational less than 1.   On 
the other hand, for any n, all points of this line sufficiently to the right are above y = n, 
which shows that c is in Kf* + (f*)n(V*) for all n, that is, c is in the right side (*)ω . 
 
            A straightforward generalization of this argument now settles the probem: Kf* has 
an invariant complement iff Kf has an invariant complement, and moreover,  s+∝ is finite 
and the kα’s are all zero for α bigger than some finite ordinal.  The proof in fact classifies 
all pictures having such cochain maps—upto stripping it must be a disjoint union of some 
doubly or left infinite strings, loops, finitely many right infinite, and finite strings of a 
bounded length—and it seems reasonable to hope that one can even classify all linear 
maps that are cographic, that is, arise as dual maps of pictures.   
 
            Of course (just as for graphic maps) restrictions of cographic maps need not be 
cographic.  In fact it is not hard to see that the restriction to Kf* of the dual map f* of 
Figure 11 is not cographic.  Moreover, the restriction of the f* of Fig. 11 to Kf* gives us a 
reduced locally nilpotent map which is not graphic.  To see this last, note that c is in 
ker(f*) iff it is supported on some nodes (t,t), and is in im(f*)nV* iff all such t ≥ n.   So kα 



= dim[(ker f*)∩(f*)α V*/(ker f*)∩(f*)α+1V*)] is zero unless α  = n, a finite ordinal, and 
then kn = 1.  But we know already that the only graphic reduced nilpotent map with these 
kα’s is the map f in the space of chains of Figure 11.  This vector space is countable 
dimensional, while Kf* is not, a contradiction. 
 
            In the above instance, we obtained identical kα’s for the chain and the cochain 
map of a picture.  This is exceptional, the cohomological invariants of a picture, though 
related to its homological invariants, are usually different.   
 
            The vector space C1 of one-dimensional cochains, i.e., functions from the  arrows 
(s,fs) to the field F of coefficients, identifies also—each arrow being determined by its 
starting point—in an obvious way with V*.  The coboundary operator δ: C0→ C1, 
defined by (δc)(s,fs) = c(s) – c(fs), thus identifies with the dual of 1 – f : V → V.  The  
zero-dimensional cohomology of the augmented picture, relative to its distinguished node 
0, is therefore H0 ≈ ker(1-f)*, the subspace Hom(V;F) of V* consisting of all equivariant 
zero-dimensional cochains c, f*c = c, i.e., those that take a constant value on each 
component, this constant value being 0 on the component of the node  0.  So β0 = dim H0 
equals β0 = dim H0 iff this cardinal is finite, otherwise it is strictly bigger.  Turning now 
to the one-dimensional cohomology it is H1 ≈ V*/im(1-f)*.  Since functionals of  im(1-f)* 
annihilate ker(1-f) ≈ H1, by associating to each cohomology class [c] ∈ H1  the restriction 
c: ker(1-f) → F, we obtain a well-defined surjection—but not necessarily a bijection, 
because, in the infinite dimensional case, the annihilator of ker(1-f) can be bigger than 
im(1-f)*—of   H1 onto the dual of H1.  So β1 = dim H1 equals β1 = dim H1 iff this cardinal 
is finite, otherwise it too is strictly bigger.  
 
            Using only cochains vanishing on U, we can associate to each invariant subspace 
U of V, a relative cohomology H*(V,U), which is tied to H*(V) and H*(U) by the usual 
exact cohomology sequence.  Using more generally the coboundary operator δ = ε – f*, in 
the vector space L(U,W) of all linear maps from U to W, we get cohomologies H*(V;W) 
and H*(V,U;W) for each fixed linear map ε: W → W, instead of just the identity map of 
the one-dimensional vector space F.  Note that one has now  H0(V;W) ≈ Hom(V;W), the 
vector space of all equivariant linear maps from V to W, and, using standard categorical 
language, V  H1(V;W) coincides with the first derived functor of V  Hom(V;W).   
Finally note that equivariant maps induce obvious contravariant and covariant maps in 
these cohomologies; in particular, f induces a contravariant map in its own cohomologies 
H*(V;W) and H*(V,U;W), and the iterated images of this induced map, which are defined 
as before, are denoted by fαH*(V;W) and fαH*(V,U;W), where α is any ordinal. 
 
            Pictures give a covariant functor from the category of partially defined functions 
S → S to the category of linear maps V → V .  We have already computed some  
(co)homologies for linear maps occuring in the image of this functor, that is, for graphic 
linear maps.  It is fairly routine to push these computations further and increase the  
number of these necessary (co)homological conditions.  Moreover, one should be able to 
write down a brief and explicit list of necessary cohomological conditions that probably 
“characterizes” graphicity.  We won’t propose such a list here, but do want to mention a 
couple of known cases to explain the quotation marks used in this remark.     



 
            (1)  If a reduced map f which is locally nilpotent, is known to be graphic, then a 
straightforward computation shows fαH1(V,fαV;W) = 0 for all α and W, and the converse 
(i.e., that this condition guarantees that such a map is graphic) has been proved,  
 
            (2)  If a reduced map f which is injective, is known to be graphic, then it is easily 
seen that H1(V;W) = 0, for any right infinite string W, but now, the converse cannot be 
proved, however we can safely assume it as a new axiom!  
 
            This intrusion of proof theory is striking, but if one thinks about it, it was perhaps 
inevitable from the very beginning.  Everything we have said flowed from the basic  
assumption that the identity maps are graphic, i.e., that any vector space V has a basis S, 
i.e., that the axiom of choice holds.  It is known that this statement cannot be proved from 
the other axioms of the current logic in which we do mathematics, but can be—and  in 
fact has been—safely incorporated into this logic as an additional new axiom, because it 
is known that it cannot introduce any new contradictions (and it is the fervent, but alas, 
unprovable belief of most mathematicians that no contradiction will be found in current 
logic).   For the case (1) the sufficiency of the cohomological condition can be barely 
squeezed out of the basic assumption by a fairly delicate argument, however in case (2) 
we run out of gas, so to speak, and the same situation re-occurs, i.e., the sufficiency 
cannot be proved from the extant axioms, but can be safely assumed as a new axiom.                  
 
    
 
 


