
Riemann, Jordan, Pontryagin, S&E (1988), etc.

The tiling 1 defines an Arf invariant 0 ‘square root’ ϑ : H1(M2;F2) → F2

of the mod 2 cup product, and any such refinement is realized thus.� We turn
now to the genesis of ϑ from theta functions.

− : − : −

The initial summary below to refresh memory was from Bellman’s thin book
(1961) especially its last pages 64-72. The names in it are all well-known, often
confusingly for the same thing, though just as often it was in fact some other
now lesser known mathematician who got there first. But my object was not its
history, just the result involving ϑ that Riemann left behind for us in 1866, so
what follows next is what I was able to grasp, after struggling for many weeks,
and with this limited aim only, from Riemann’s papers VI, XI and XXXI, this
numbering being that in the 1892 edition of his Werke.

− : − : −

Multidimensional theta functions :- The Legendre ambiguity of any rational
integral

∫
R(x, y)dx under polynomial constraint P (x, y) = 0, Abel had inverted

to 2p-periodic functions, which Jacobi saw were obtainable from the p-fold
Fourier series θ(z, T ) =

∑
n e

2πin.z−n.Tn, where z and n are integral and complex
p-vectors and T a p×p symmetric matrix with eigenvalues of Re(T ) positive for
absolute and uniform convergence on compact sets; a quasi 2p-periodicty is clear,
viz., θ(z+ek, T ) = θ(z, T ) and θ(z+iTek) = e−2πiek.z+ek.Tekθ(z, T ), where ek is
kth unit vector; but modular functional equation θ(z, T ) = πp/2√

det(T )
θ(T−1z, T−1)

needs a p-dimensional Poisson formula for averaging functions over Zp and a p-
fold Gaussian integral; for genus p = 1 using this functional equation Riemann
analytically extends Euler’s zeta function in his VII, and like results are known
for some number theoretical matrices T .�

− : − : −
1Not in above stand-in for a lost figure.
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Riemann in §17 of VI shows that, for each p×p symmetric ai,j with real part
negative definite, there is upto a constant factor a unique analytic θ, finite valued
on all complex (v1, ..., vp), which is unchanged if we add πi to any variable, but
gets multiplied by e2vµ+aµ,µ if we add (a1,µ, . . . , ap,µ); integral combinations of
these 2p independent translations he calls the associated moduli of θ and often
(v1, . . . , vp) ≡ (w1, . . . , wp) will denote variables related by them; also from its
expansion – as above with T = −a, πiz = v – over integers (n1, . . . , np) he notes
in §23 that it is even θ(v1, ..., vp) = θ(−v1, . . . ,−vp).�

− : − : −

In XXXI he notes (v1, . . . , vp) ≡ (−v1, . . . ,−vp) holds only on all half integral
combinations ( 12ε′1πi+ 1

2ε1a1,1+· · ·+
1
2εpap,1, . . . ,

1
2ε

′
pπi+ 1

2ε1a1,p+· · ·+
1
2εpap,p)

and that mod two exactly 2p−1(2p − 1) of the 22p choices ε1ε′1 + · · · + εpε
′
p are

nonzero:- there are 2p − 1 not all zero choices for the ε′i and if ε′i = 1 any of the
2p−1 choices for εj , j 6= i occurs with εi = 0 or 1, respectively, depending on
whether the sum over the other indices is 1 or 0.� Riemann’s papers are easier
on the eye than the standard reference below.

− : − : −

Mumford’s Tata Lectures on Theta I, II (1982) curiously makes heavy weather
of many things proved so quickly by Riemann. Mere manipulations, badly type-
set to boot, make stretches real eye-sores. However its well-written Chapter 2
puts Riemann’s VI, XI and XXXI in a modern context. Chapter 3 or II, which
uses an heavier commutative algebra jargon, is turgider.

− : − : −

Riemann surfaces in VI are graphs of polynomial equations, in Chapter 2 any
connected and closed X of genus g. That g independent holomorphic 1-forms
exist is in VI, that no more can is due to Roch (a student who died four months
after him). VI too uses through any P0 a homology basis of g pairs Ai, Bi of loops
intersecting each other–but no other loop–once more. Let Ωij =

∫
Bj
dωi, the

ith holomorphic 1-form ωi dual to the loops A, evaluated on the jth conjugate
loop Bj , then Ωij = Ωji with imaginary part positive:- use wedge product of a
holomorphic 1-form with another is zero, while with its conjugate is imaginary
with non-positive coefficient.� All this too is in VI except g = p and dual
integrals or 1-forms are πi times with periods πiΩij = ai,j . So any X dissected
as above comes with the θ(z1, . . . zg,Ω), the 2g-torus J obtained by dividing Cg

out by the moduli of this theta, with X complex analytically embedded in J
using P 7→ [

∫ P

P0
ω1, . . . ,

∫ P

P0
ωg].

− : − : −

It is shown in VI and XI that just like
∏d

i=1(z−Pi)∏d
j=1(z−Qj)

is meromorphic on Ĉ with
zeros Pi and poles Qj–their number with multiplicity must be the same—unless
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d < 2g, for any disjoint d-multisets {Pi} and {Qj} of X a meromorphic function

on X having precisely these zeros and poles is
∏d

i=1 θ(e1+
∫ z
Pi

ω1,...,eg+
∫ z
Pi

ωg)∏d
j=1 θ(e1+

∫ z
Qj

ω1,...,eg+
∫ z
Qj

ωg)
for

some zero (e1, . . . , eg) ∈ Cg of θ :- That θ(
∫ y

x
ω) ≡ 0 ∀y can happen for some

x was noted in VI, and XI shows this can’t happen for all x. Using this, for
the finitely many given points, there does exist a θ(e) = 0 such that neither
the numerator nor the denominator of the expression is identically zero. So
it is meromorphic and has indicated zeros and poles. Also, if the paths of
integration are chosen with due care, it is 2g-periodic, i.e., it is the pull-back of
a meromorphic function on J uniquely extending its restriction on X. That this
function has no other zeros and poles on X follows by checking that each factor
of this alternating product does have other zeros, but always the same 2g − 2
points, so they cancel out.�

− : − : −

The above theorem was found by Abel, who avoided complex integrals. By
Riemann’s time, Cauchy-Liouville theory was in place, to which he added an
existential insight about Laplace’s equation. This Dirichlet Principle underpins
his discovery of the Riemann Mapping Theorem in I, and is used for Riemann-
Roch as well. As frequently happens with a new idea, it was flawed – his rival
Weierstrass gave counterexamples to this principle as stated by him – but as
happens just as often, if there is a cartesian naturality in the idea, many paths
around these flaws slowly emerged, leading on to the discoveries of ... Lefschetz,
Hodge, Hirzebruch, Atiyah, Grothendieck ...

− : − : −

We recall FTA says all d-multisets, or divisors of positive degree d, of any X
make a closed 2d-manifold Symd(X).� [A new NB from 21/06/21 post Mr π;
should speak Riemannese of VI à la Abel addition in Goursat II; Lahore unlike
filmi run was before Rome, led to Milkha book, no 1J 16A but daily Delhi drivel,
older by pwS even less; yes dvweI vI Aqy kVweI vI on vaccine certificates is not
Punjabi; on 27th K told he’s working on Equivelar.]

− : − : −

An exciting higher dimensional possibility :- Our method generalizes at least
to any n-cube (or its dual polytope) inscribed in the unit Sn−1 ⊂ Rn. It tiles
the n-ball of infinite radius Rn and has sum of the solid n-angles at all vertices
already vol(Sn−1). Anyway, much as before, we bend the facets of this n-cube
equally inwards, so at any time they lie on spheres hitting a concentric Sn−1

c of
radius c ≥ 1 normally, to continuously decrease the sum of the solid angles at
all vertices of this now curved n-cube from that value at c =∞ to zero at c = 1.
Of particular interest are the c’s for which this sum is a rational, especially, an
integral prime p divisor of vol(Sn−1). Then it generates by glide half-rotations
in the geometry of the ball Bn

c of radius c, a p-fold curved tiling of this open n-
ball branched only at vertices, with quotient, a closed hyperbolic n-manifold. A
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construction of such manifolds so much more vivid than of Hyperbolic manifolds
that it should be easy to spot among these many that are almost parallelizable,
thus by-passing the étale route via Deligne-Sullivan (1975) to satisfy this extra
condition. We recall that it was using the existence of such hyperbolic manifolds
that Sullivan (1977) saw 2 by a relativistic version of a Pontryagin reminiscent
toral argument of Kirby that, outside dimension four, any topological n-manifold
has a unique Lipschitz conjecture.�

− : − : −

Goursat closes §101 thus: “The study of these integrals is made very easy by
the aid of plane surfaces composed of several sheets, called Riemann surfaces.
We shall not have occasion to consider them here. We shall only give, on account
of its thoroughly elementary character, the demonstration of a fundamental
theorem, discovered by Abel.” The ‘very easy’ shows at his level Riemann’s VI
was thoroughly absorbed by then, and his §102 on this ‘thoroughly elementary’
addition theorem of Abelian integrals exemplifies the easy now (yet rigorous, but
never as in rigor mortis) style of this masterly text. Because of the regression
brought about by our subservience to set-theoretic language, I don’t think (the
original) Riemann is well understood now.

− : − : −

Lest we forget, the space of all (polynomial) equations � over reals with its
stratifications by degree, number and multiplicity of (real) roots–that led us to
use Thom’s usage swallowtail profusely–is the natural object.3 Focussing on a
degree d, using an∞ to compactify, and (reluctantly) two-dimensional numbers
for extra room, e.g., FTA, mere means towards an end: a better understanding
of this cartesian thing! This reminder made, we note each equation � in the
top most stratum of the compactified degree d complex swallowtail ♥ has its
Riemann surface S(�): the graph of the algebraic function y of x defined by this
degree d homogenous equation F (x, y) = 0 sharing no roots with its derivative
with respect to x. Abel’s addition theorem gives us something about S(�) that
is constant as � dances around in this space.

− : − : −

About 5 years after conjecturing it, I circulated a tantalizing “proof” of the
higher Heawood inequality in Shifting & embeddability (1988), but withdrew it

2Section (2.10) of Gromov’s Partial differential relations (1986) begins with these isometric
but far from smooth Nash immersions of almost parallelizable manifolds, and ends with Cauchy
rigid embeddings of minimally triangulated simplicial manifolds; this last connection was also
independently seen by Kalai (1987).

3This ball was set rolling by bIj gixq dw mUl mslw (2017) wherein is shown: the equations
we used to solve in school using the quadratic formula form a Möbius strip! This pretty result
was my gift to my wife on 18/04/23, so it’s now Minni’s theorem; by then I’d also made a
shahmukhi transliteration of sorts of its statement and proof, using a qaida which had been
her gift to me a week before on 11/04/23.
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after acceptance from Topology. It had made quite an impact on Gil Kalai, who
claiming a bit more, had then used a pretty argument to “show” the g-conjecture
for simplicial spheres.4 Of which he informed me excitedly. Alas! my return
email bore my misgivings. Soon after, when with my family I was for a few days
near San Francisco, I met him for the first time. This interaction continued by
mail, as we proceeded to IHES for a month, then an academic year in MPI,
including a month away at Djursholm, where I met Gil again. Just to break the
ice, I told him a short proof of Tverberg’s theorem from Linear embeddability
(1991)—notes on many things, old and new, that I had been typing: my paper
with Brehm showing, contrary to what Grünbaum had thought, how much more
restrictive this was than piecewise linear embeddability of simplicial complexes
is also from about then. I had no idea he would like it so much! It was soon a
separate short paper, that appeared in his journal, and much later in 2008, in his
own words—but adorned with a photo of mine!—on his popular blog. The more
serious job of reviving the alluring argument of S&E was never far from my and
I suspect his thoughts, for example, I talked on my last day in MLI on shifting
(many variants were being tried) and a bit of this is in a Bonn talk too. In 1994
Gil invited me for a very pleasant month in Jerusalem, where we two had a good
go at it again, but that ‘just a bit more’ remained elusive. Soon after Gil included
this long conjectured inequality in his ICM talk. I’ve often enough mused about
it in these writings, and told you that in 2018 it was finally proved for piecewise
linear embeddings—so possibly it is false for some wild embeddings—by Karim
Adiprasito :- as such this medal-worthy paper takes a different tack, but has
in it some neat generic linear algebra arguments, including one he later found
was known to Kronecker (1890), which suggest that the fish can also be reeled
in–maybe even before the next ICM rolls around!–in a more cartesian manner
using shifting.�

− : − : −
Liouville showed (1) a doubly-periodic (meromorphic) function with no poles

is constant, others (2) have more than one pole in any tile with (3) same number
of zeros, also (4) sum of zeros ≡ sum of poles, and (5) two such function with
same periods satisfy a polynomial equation:- For (2), (3) use 1

2πi
∮
f(z)dz = 0,

1
2πi

∮ f ′(z)
f(z) dz = 0 on boundary (make symmetric detours around poles on it if

any) of tile, for the contributions of opposite edges cancel, so invoking Cauchy
the residues of f(z), f ′(z)

f(z) in tile sum to zero. Then (1): if f(z) has no poles, nor
has f(z)−f(z0) but has zeros. For (4) note 1

2πi
∮
z f ′(z)

f(z) dz is integral combination
4Conversely, in Gil Kalai’s The diameters of graphs of convex polytopes and f-vector theory

(1991), there is a reformulation – for my exposition see Reviews I, pages 19-22 – of the by then
proved g-conjecture for simplicial polytopes in the language of commutative shifting, to prove
the Heawood inequality for subcomplexes K of simplicial polytopes! Over the complex numbers
forms with polynomial coefficients sit in smooth Thom forms on the simplicial complex, so
building a Lefschetz-Kähler-Hodge theory in this setting was indicated from the outset as a
promising path of attack for all simplicial spheres. However complexification also washes out
much, for example swallowtails, so most cartesian and much more vivid would be to establish
directly this real reformulation of the g-conjecture using deleted joins and equivariant shifting,
without ever resorting to complex numbers.
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of the periods by which z differs on opposite edges. For (5) that polynomial
P (f(z), g(z)) in the functions has same periodicities, and for degree big its
coefficients can be so chosen that it has no poles: because these can be only those
of f(z) or g(z), and if homogeneous linear equations outnumber unknowns there
is a nonzero solution.�

− : − : −

Generating all doubly-periodic (meromorphic) functions using biquadratics
from Jacobi’s elliptic functions is then what Briot et Bouquet do; later texts, e.g.,
Goursat and Ahlfors, prefer cubics and Weierstrass’s ℘(z). Save (4) the results
above hold also relativistically, i.e., for the multi-periodic automorphic functions
of Poincaré on an open disk of radius c <∞:- same proofs (for we avoided using
the non-relativistic result5 that a bounded entire function is constant).� We’ll
deal mainly with those tied to its half-turn tilings.

− : − : −

A saral parcha on Jordan’s solution of generic polynomial equations, and its
analogue with compact tiles, entails shifting the hobson miscellany for what we
need. For another, an equivariant shifting cartesian proof of the higher Heawood
inequality, we’ll do the same for the generic linear algebra in papers from S&E
(1988) to Adiprasito (2018).6

− : − : −

There was an equation for a complex horizon of n cyclically ordered distinct
complex numbers zj with uj =

zj+1

zj
, viz.,

∑
mE2m+1(

c2−1
c2+1 .

uj+1
uj−1 ) = 0, where

Et( ) is the elementary degree t symmetric function of n quantities, which we
developed in the hobson miscellany. From the condition for the seminal case,
zj in order on the unit circle, that the sum of the n angles between the circular
arcs zjzj+1 normal to the concentric circle of radius c, be an integer times 2π.
This is true for c = 1 when angles are zero, and if n is even for c = ∞. Are
one or both of these solutions tied to a Riemann theta function of n variables?
On which hinges Jordan’s theorem as to how the zj can be written in terms of
their elementary symmetric functions, made explicit by Thomae and Umemura.
So we’ll first look at the question just posed. The other horizons c > 1 for the
seminal case give compact possibly branched half-turn tilings of the concentric
disk of this radius. Using the relativistic theta functions that enabled Poincaré
in 1881 to make automorphic functions, there ought to be similar solutions of

5This strengthening of (1) for c = ∞ was aired by Cauchy before Liouville. How extremely
non-relativistic this stronger property is was “shown” – a dodgy Dirichlet principle took half
a century more before it was ach so! – by Riemann: there is a holomorphic bijection between
the open disk and any proper open simply connected subset of C. This holomorphic flexibility
of the finite open disk is in play also in our method of solving any equation as it moves from
the seminal to the fully generic case.

6On back-burner for now is a third srl prcw on cartesian birth from relativistic motion
of any Lipschitz manifold, with a cartesian version of Sullivan’s proof that outside dimension
four all manifolds have a unique Lipschitz structure.
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generic polynomial equations for these. The horizons 0 < c < 1 give tilings of
the disk complement, so something mod 2 is also afoot.

− : − : −

A power series
∑+∞

−∞ anu
n valid in an annulus around the origin unwraps

under u = e
2πi
ω z to a trigonometric series of a function with period ω analytic on

an infinite strip.� So complex integration helped, but for more on multi-periodic
functions, for example their existence via thetas, we need to mess around like
Abel say for starters with Fourier’s series.

− : − : −

In S&E (1988) we used Kalai’s shifting of generic forms, made equivariant,
and van Kampen’s obstruction to embeddability of a simplicial complex Kn

in Cn, as in Wu. We cited Sullivan’s rational homotopical computations with
generic forms, but now obstruction is mod two. So maybe—and this seems the
way of choice if the higher Heawood inequality is true even for all topological
embeddings—just shift the deleted join in some big characteristic two field? As
is suggested by APP (2021) which also traces back to Kronecker that generic
argument–like that hoped-for disjointness preserving equivariant shifting in the
big field–in Adiprasito (2018). This and matroidal AHK (2015) mimic Kähler
package, so maybe shifting holomorphic forms near embedded complex is more
conceptual? This package is Poincaré duality, as honed by Lefschetz, with Hodge
relations on the bilinear form. For complex dimension one, note this is nothing
but symmetry and positivity of the period matrix Ω that goes into the definition
of Riemann’s theta function. So all this too goes back to his VI + XI + XXXI,
inclusive of mod two Arf aspect, which we saw, in the last installment of this
miscellany, was the algebraical key turned by Pontryagin and Rokhlin to probe
from within what manifolds really are.�

− : − : −

This 1890 paper of Kronecker, see Werke Band 3-2, was on the classification
of pairs so a pencil of (f.d.) bilinear forms, that is, a projective analogue to that
of linear maps in Jordan’s 1870 book, which ties to that of abelian groups, see
e.g., Herstein. An update by Zavadskij (2007) on Kronecker’s problem helped,
also musing on Zoltek and positively curved (1986) led to the winding number
argument of Milnor for reducing a pair of bilinear forms in Greub’s book, then
how a question of Dinesh much later had led to some infinite dimensional (2006)
(im)possibilities. Wedderburn’s book on matrices which follows another note in
Band 3-2 is perhaps best for Kronecker’s reduction. That equivariant cartesian
shifting is like reduction of one symmetric bilinear form, generically containing
Kuratowski complexes (1991), thanks to a perturbation lemma like the one used
by AKZ (2021) : if β(kerα) ∩ imα = 0 then any generic linear combination of
linear maps α and β has a bigger rank.� In this paper Kronecker’s canonical
forms are in fact used to prove this over any infinite field, algebraic analogues
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of the Heawood inequality conjectured for multilinear forms, and some proved
for binary and ternary forms.

− : − : −

Note hypothesis of this lemma may not hold if α and β are interchanged, but
Adiprasito’s iteration uses it with a Poincaré duality, which stems from piecewise
linearity: then, see Akin (1975), a bigger simplicial complex L triangulates Ĉn

and it is this simplicial sphere which is examined.� Our equivariant shifting will
otoh use just one symmetric bilinear form over a field of characteristic two, so big
that Heawood inequality false for Kn implies generically a (2n+1)-dimensional
pseudomanifold, so a Kuratowski subcomplex, etc.

− : − : −

S&E (1988) has §1 Introduction, §2 Shifting, §3 Embeddability, then thanks
to Björner for sending his paper [4] with Kalai, and to Adler for a conversation,
and ends with references [1]-[30], of which six are to my own work including
Kuratowski Complexes, also written at Barrick Street.

− : − : −

§2 begins by noting that oriented simplicial coboundary of K stays of order
2 if omission of any vertex v goes with multiplication by ω(v) ∈ F instead of 1
of the field, and has cohomology isomorphic to H∗(K) if all ω(v) 6= 0.� Which
is dubbed ellipticity of the 1-form ω on the free vector space V over all vertices,
because of an analogy with a symbol sequence of the de Rham d, when however
K is a closed simplex and this sequence is exact.

− : − : −

So the convex hull of the vertices of any simplex σ 6= ∅ lies on the hyperplane
sum of all coordinates 1, also deem ∅ this sum function. Any oriented σ as the
constant |σ|-form which is ±1 on its vertices, but 0 if any different, makes the
oriented cochain complex (C∗(K), δ) a quotient subalgebra (Ω∗+1(K), d) of the
DGA of all smooth forms on V. On it d is wedge product with the 1-form which
maps vertices to 1, instead we can use any elliptic ω.� We note this is not cup
product, p-cochain ∧ q-cochain is a (p+ q + 1)-cochain, and recall a twisted dω
was Witten’s way 7 into Atiyah-Singer index theory.

− : − : −

I’d mused here on a small canonical quotient subalgebra of this DGA that
gives not only the cup product but, à la Sullivan, the homotopy type of K over

7Indeed shifting belongs to the discrete aspect of Morse theory : any partial order of vertices
which totally orders all simplices extrapolates simplexwise linearly to a real map ξ with only
nondegenerate critical points at some vertices v, namely those with a(v, ξ) ̸= 0 in the notation
of Banchoff (1967); so any total order of the vertices of K and the induced partial order of the
vertices of K∗ can be construed as Morse functions on |K| and |K∗| ; but such a total order
is precisely the tool we need to do lexicographic sieving etc.
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char(F), but don’t remember much :- that of all smooth forms on V zero outside
a tubular neighbourhood of K does the job, but one can even from the DGA
of all forms on V with polynomial coefficients, find small examples by imposing
other conditions depending on K.�

− : − : −

Our dω = ω∧ is d conjugated by the algebra isomorphism of Ω⋆(K) generated
by perturbing the vertices v in V \ {0} to ω(v)v on their own axes. The kernel
and image of dω are preserved by many linear isomorphisms, notably, the graded
linear basis B(K) left after lexicographically sieving, from the power set of any
basis ω, ω2, ω3, . . . of V , all sets which as forms of Ω∗(K) linearly depend on the
preceding, is a simplicial complex with the same cohomology:- If oriented set σ
is linear combination of preceding, ∧ with θ \ σ shows so is bigger set θ; also
we have the linear bijection L : Ω∗(K)→ Ω∗(B) commuting with dω’s mapping
σ ∈ B to

∑
θ<σ cθθ + σ where ω ∧ θ ∈ B,ω ∧ σ = ω ∧

∑
θ≤σ cθθ.

In above lower triangular recipe it is clear when a form is considered in the
old quotient Ω∗(K) of all constant forms Ω∗ on V , and when in its new quotient
Ω∗(B). Being just its first vertex ω is not elliptic for B but gives a Hodge basis:
StBω is a basis of im(dω) on which LkBω maps bijectively under dω, so rest β
give us a basis of ker(dω)/im(dω); also if ωj ∈ β /∈ StBω then ω ∪ (β \ωj) ∈ B:-
for if an l.c. in Ω∗(K) of preceding part of StBω inner product with ω contradicts
β \ ωj ∈ B. That is, Udω = dU holds for the upper triangular linear bijection
U of Ω∗(B), which keeps simplices of subcomplex [B \ ω] fixed, and maps any
σ ∈ StBω to d(σ \ ω) = σ +

∑
j ωj ∪ (σ \ ω).�

For example, for any F, replacing a basis of vertices v1, v2, . . . , vN of K with
the new basis v1 + · · ·+ vN , v2, . . . , vN of V gives such a ‘near-cone’ B, also for
this elliptic ω = ω1 no initial conjugation is needed.

− : − : −

If F is big we can choose ωj to make near-cone B still simpler, the point
being that any field automorphism π of F extends to a differential graded algebra
automorphism of Ω∗(K) linear over its fixed subfield which keeps vj and so all of
K fixed, but can move and even permute linear combinations. For example, if we
choose ωj on the moment curve v1t+v2t2+· · ·+vN tN for values t1, t2, . . . , tN ∈ F
permutable in all possible ways by field automorphisms, then B is closed with
respect to replacement by any smaller vertex:-

If ωj1 < · · · < ωjr is dominated by ωk1
< · · · < ωkr

and ωj1 ∧ · · · ∧ ωjr is
a linear combination of preceding forms an automorphism π of Ω∗(K) strictly
increasing from {ωj1 , . . . , ωjr} and its complement onto {ωk1

, . . . , ωkr
} and its

complement shows that ωk1
∧ · · · ∧ωkr

is also such a combination.� Also, since
replacement by ω1 is always on, this ‘shifted’ conclusion is true even if t1 = 1
and t2, . . . , tN are permutable in all ways by field automorphisms.

− : − : −
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The obstruction to Kn ↪→ Cn lives in the cochain complex of its deleted join
K ∗ K equipped with conjugation, which has the following lexicographically
first Z/2-bases beneath the octahedral sphere ∆ ∗∆ with simplices α∪β for all
disjoint pairs (α, β), |α| = p, |β| = q of subsets of vertices of K:- We perturb a
canonical basis of vertices v1, v2, . . . , vN of V to ω1, ω2, . . . , ωN , and of conjugate
vertices of V to its conjugate ω1, ω2, . . . , ωN . Then, all increasing sequences of
ω’s with p bare and q overlined, as forms on V ⊕ V , descend to a basis of
Ωp,q(∆∗∆), so a spanning set of its quotient Ωp,q(K ∗K) which is nonzero only
if p, q ≤ n+1. And, increasing sequences of v’s of the same type, i.e., overlined
at same spots, give direct sum decompositions of Ωp,q(K ∗K), e.g., Ω2,3(K ∗K)
may have a nonzero summand Ω11010(K ∗K), to which length five ω-words with
the first two and the fourth letter overlined shall descend as a spanning set. So,
sieving out in each type forms depending linearly on the preceding, gives a new
Z/2-basis B(K ∗K) of Ω(K ∗K).� Likewise Z/2-bases for the cochain complex
of any Z/2-subcomplex of the octahedral sphere.

− : − : −

The argument we used before to show closure under inclusion doesn’t work
now, e.g., B(K ∗K) may well contain ω3 ∧ ω4 ∧ ω6 ∧ ω7 of type 0110 but not
ω3 ∧ ω7 when the latter depends on preceding forms amongst them ω3 ∧ ω5, for
wedge of this form with ω4 ∧ ω6 has another type 0101; indeed B(K ∗ K) is
seldom a simplicial complex:- when it is one then B(K ∗K) ⊆ B ∗ B because
B = B(K) and B(K) = B are in it; but a generic B ∗ B is usually smaller in
size than K ∗K, for example K a square has as its B a triangle with a fourth
edge ω1ω4 attached to its least vertex.�

− : − : −

However for F big, ω1, . . . , ωN a generic basis of V as above, and ω1, . . . ωN

the conjugate basis of V , an action of Aut(F) shows that, any ω-word dominated
by a word of the same (length and) type in B(K ∗ K) is also in it:- for the
permutation π taking the increasing sequence of letters–bare or overlined ω’s–in
the dominated word termwise on the dominating, and letters not in the first
in an increasing way on those not in the second, can be effected by a type
preserving algebra automorphism π over a subfield of Ω(K ∗K) which keeps all
of K ∗K eerily8 fixed and commutes with conjugation.� But replacing an ω by
any smaller is now different, can change type, and is not on.

We emphasize our Z/2-typed fine grading of Ω(K ∗K) depends heavily on
the basis, i.e., the order of vertices v1, . . . , vN , which stay put under this action
of Aut(F) on the coefficients of linear combinations of the typed v-words. The
quotient subset of ω-words of its type in a summand is not preserved, but under
above shuffles π those lexicographically preceding a dominated word are mapped
into those preceding the given word.

− : − : −
8For how uncannily useful such totally discontinuous Galois symmetries can be to grasp

things quite continuous, Sullivan’s MIT Notes (1970) are still best.
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That Kn ↪→ Cn implies Heawood’s inequality fn(K) < (n + 2)fn−1(K),
where fi means the number of i-simplices of, is strongly suggested by the fact
that, if K does not satisfy this inequality then its generic B contains the n-
skeleton P of the simplex {ω1, . . . , ω2n+3}:- if all n-simplices of B have smallest
vertex in {ω1, . . . , ωn+2} deleting it counts a subset of (n−1)-simplices of B not
containing ω1, none counted more than n+2 times, so fn(B) < (n+2)fn−1(B);
so there must be an n-simplex in B with first vertex at least ωn+3, but all n-
simplices of the above (2n+ 2)-simplex are dominated by it.� We recall Pn is
non-embeddable in Cn:- which Flores showed by checking that P ∗P is an S2n+1

with antipodal action, which makes it, since there does not exist a continuous
Z/2-map S2n+1 → S2n, an obstruction to embeddability because Kn ↪→ Cn

implies there exists a Z/2-map K ∗K → S2n.�
Were genericB∗B smaller in size thanK∗K because in factB∗B ⊆ B(K∗K)

is always true–this however is moot–then à fortiori we would get an obstruction
P ∗ P ⊆ B(K ∗K) from the negated Heawood inequality (NHI), so we’ll seek a
direct counting argument generalizing above.

− : − : −

Facets opposite smallest vertices of simplices of B(K ∗ K) are also in it:-
for, replacing smallest vertex by ω1 or ω1 gives a dominated word of the same
type, but if facet were a linear combination of preceding words of its type, ∧
with ω1 or ω1 would show this word is not in B(K ∗K).� So, if fτ (K ∗K) ≥
(2n + 3 − `(τ))fτ1(K ∗ K), where fτ is the number of simplices of type τ of
length `(τ), and τ1 the type obtained by erasing τ ’s first 0 or 1, then all type
τ simplices of P ∗ P are in B(K ∗K):- the argument above using the NHI, i.e.,
the case τ = 00 . . . 0 of length n+ 1, works in general.�

So for any Kn, with an ordering of its N vertices, we have now in hand some
numerical inequalities—one of them the NHI—which ensure the presence of the
obstructing Z/2-sphere P ∗ P in the generic B(K ∗K).

− : − : −

In general the other inequalities don’t follow but, if we discard from a Kn

satisfying the NHI all simplices not incident to any (n−1)-simplex then fj(K) ≥
(2n+2−j)fj−1(K)∀j ≤ n :- (j+1)fj =

∑
θ val(θ) over all (j−1)-simplices θ; so

≥
∑

θ n− j+val(σ(θ)) for any choice of (n−1)-simplex σ(θ) containing θ; if we
choose to maximise valence then ≥ (n−j+(n+1)(n+2))fj−1 because NHI says
average valence of an (n−1)-simplex is≥ (n+2)(n+1); but n−j+(n+1)(n+2) ≥
(j + 1)(2n+ 2− j)∀j ≤ n.� So indeed, fa,b ≥ (2n+ 3− a− b)(fa−1,b or fa,b−1)
where fp,q = dim Ωp,q(K ∗K) :- The average number of times a (j− 1)-simplex
of K occurs as the facet opposite the first (or second or ... last) vertex of its
j-simplices is fj(K)

fj−1(K) ≥ 2n+ 2− j; for a simplex of K ∗K having a un- and b

over-lined vertices knocking out the first from former reduces the ‘uns’ to a− 1
and from latter the ‘overs’ to b − 1; and conversely for any such simplex the
uns respectively the overs can be augmented in the beginning by on an average
at least 2n + 3 − a respectively 2n + 3 − b choices of an un respectively over
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vertex; of which choices at most b respectively a are banned by disjointness of
uns from overs, so ≥ 2n+3−a− b choices remain.� A stronger inequality with
or replaced by + is however implied by the type inequalities.

− : − : −

We can streamline K more:- if fn > (n+2)fn−1 just knock out an n-simplex,
if any (n−1)-simplex has valence less than n+3 erase its star, and demand that
the complement of (n−2)-skeleton be connected, i.e., use a minimal K satisfying
the NHI. � However it seems the choice of vertex order matters and should be
involved, and a way is suggested by the interpretation above of fn(K)

fn−1(K) as the
average frequency of an (n− 1)-simplex as the first facet, i.e., that obtained by
deleting their first vertex, of n-simplices:- from the top simplices of K ∗K–on
which we assume the inequalities for all types τ with a = b = n+1–downwards,
we strip off all simplices that do not occur as first facets, then down from these
leaves along the first facet path on the concomitant binary tree of types the lower
typed inequalities follow.� Leaving thus only these top typed inequalities to be
dealt with; till then there is a chance that these numerical conditions are strictly
stronger than the NHI, but even then note we are now dealing with topological
non-embeddability, not just piecewise linear, and our approach is ways more
direct than via the Kähler package.

− : − : −

Heawood’s inequality is by no means sufficient for embeddability in double
dimensional space:- the latter is unaffected by replacing K by its derived, with
simplices its ⊂ chains, but for n ≥ 2 deleting the topmost barycentre shows now
fn < fn−1 and for derived graphs a factor 2 on right will do. Even our critically
non-embeddable complexes, i.e., joins

∏
i P

ni , satisfy HI: if an (n− 1)-simplex
lacks a vertex of Pni it has valence 2ni+2, so average valence (n+1)fn

fn−1
≤ 2n+2,

i.e., fn ≤ 2n+2
n+1 fn−1 < (n+ 2)fn−1.�

− : − : −

A really pleasing weak generalization of the Pontryagin-Kuratowski theorem
would be this:- just as in the deleted join of a non-planar graph |P 0P 0| or |P 1|
give us 3-spheres, a ‘refined’ equivariant shifting should enable us, for n > 2, to
characterize Kn ↪→ Cn by the generic absence in K ∗K of any

∏
i P

ni ∗
∏

i P
ni ,

which are all antipodal (2n+ 1)-spheres.�
The 16-year old blind prodigy’s graph theoretic result was not isolated from

the characteristic classes which he and others in his train discovered: he switched
from homology to cohomology to avoid singularities of obstructing cycles, but
for a clear grasp of say Pontryagin numbers we should perhaps now switch back
to homology and examine generic obstructing cycles.

− : − : −
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The particular characteristic class detected by the above obstructing Z/2-
spheres–note they are as many as the number of partitions of n+1–is that of van
Kampen and vanishes for manifolds: it is the first step in the difficult problem
of characterizing when Kn is an n-manifold. Anyway this first step was itself
considerable: its vanishing is not only necessary but, outside dimension n = 2,
sufficient for embeddability of Kn in Cn. That ‘refinement’ we seek should not
destroy any of these π(n + 1) obstructions, so genericity has to be controlled:
so maybe shifting equivariantly the deleted join of the derived, using somehow
its canonical vertex colouring by the n+ 1 weights of the barycentres of Kn to
exercise this needed control?�

− : − : −

Deleted joins, typing, equivariant shifting, characteristic classes, etc., extend
naturally9 from Z/2 to any group G, for example, if deleted join of {pt} is G,
then–join formula–that of the simplex with N vertices is the ambient N -fold join
G ·G · ·G—ambient octahedral sphere for G = Z/2—which for N →∞ has as
its quotient Milnor’s universal space BG: so developing the combinatorial ideas
above for G = S1 ⊂ C× and its finite subgroups should already give us a much
better grasp of Pontryagin numbers.�

− : − : −

However it is Z/2 that is the most subtle, because of that example on which
Rokhlin stumbled in pushing Pontryagin’s picture of π4(S2) to the first group
π5(S

3) on its stem: the insufficiency, for n = 2 only, of van Kampen vanishing
for Kn ↪→ Cn, and the mod 2 obstruction, for n = 4 only, to creating a manifold
Mn by a relativistic cartesian motion, are both tied to it.�

− : − : −

Should we call K the negative rather than the conjugate of K? So far it has
been the latter: say conjugation in the 45 degree line, with K itself the +1 or
real and K the +i or imaginary copy amongst an S1 worth of copies forming in
S1 · S1 · ·S1 ⊂ CN the S1-deleted join of K whose tubular nhbd’s Dolbeault
diamonds Ep,q

r (U) converge to its cohomology over C.�
However this time we won’t use conjugation, i.e., reflections of S1, and K is

say the −1 ∈ S1 or negative copy of K, with Z/2 the subgroup {±1} of S1: so
the real part of the S1-deleted join of K is K ∗ K in the octahedral (N − 1)-
sphere {±1} · {±1} · ·{±1} ⊂ RN .� Also the age-old ‘big’ field of real numbers
only will be used to shift this real part.

− : − : −

Work out generic B(K ∗K) for K = 3pts · 3pts type graded by two different
orders of V . Recall colored shifting and that it works for joins, but bicolored

9I’ve played with this basic idea in many papers starting with the third of my 1988-9 trilogy,
and these should evolve into a beautiful theory.
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colored shifting of deleted joins, e.g., 3pts ∗ 3pts, is a fatter complex see S&E.
Otoh equivariant is same size though not complex, but for deleted joins of Pn’s,
e.g., for 3pts, keeps them fixed. Under same sieving using partial order definition
we should maybe expect n + 1 colored K ′ to become a bigger complex, does
it? What happens if we totally order vertices by concatenation, bearing color 0,
then all colored 1, and so on? Of course just B(K ′) now is ordinary shifted and
since HI holds no Kuratowski complex can be expected in it. But we use now
any such concatenated total order to define a finer type grading for K ′ ∗K ′ and
equivariantly shift it. It is same size, is it now even an s.c.? Crazy confusing.

− : − : −

Since type inequalities seem dependent on choice of vertex order, before
we start looking for one which makes them true, we ought to be certain that
their consequent inequalities fa,b(K ∗ K) ≥ (2n + 3 − a − b)(fa−1,b(K ∗ K) +
fa,b−1(K ∗ K)), which certainly do not depend on vertex order, are true. For
a Kn obeying the NHI and such that any simplex is incident to some (n − 1)-
simplex we checked them for cases b = 0. That is we know that the average
valence of a cardinality a − 1 simplex of K is a(2n − 3 − a). Now note that
any simplex with a un and b over-lined vertices has a facets with uns one less.
To atone for the fact that one of these a facets itself has either itself a vertex
that occurs over-lined in the second factor, or one of its incident cardinality a
simplices of K has such a vertex, we need to subtract ab, thus giving us an
inequality afa,b ≥ a(2n + 3 − a − b)fa−1,b. Likewise we have the inequality
bfa,b ≥ b(2n+ 3− a− b)fa,b−1. hmm ... hmm ...

− : − : −

The plan–p. 29–to scour ‘papers from S&E (1988) to Adiprasito (2018)’ was
a non-starter: after reading a bit of S&E I put it aside too, and bad memory and
all, decided that what was needed from the past shall come back slowly to me on
its own! Soon after type knocked, I realized it was from the past, and taking time
out, found, scanned and uploaded10 this forgotten work: but it was two months
later, on November 1, 2021, that I refreshed myself on what all is in the 67 pages
of mli (1992) : wow (though I’m saying it myself)! My spur had been maybe
I’ll find the needed type inequalities there, so could save time: these however I
didn’t find. But it is a treasure trove of other ideas – especially in its §8 and
§8bis, both quite long – and has pithy yet complete accounts of things due to
others: like Kalai’s pretty argument using (1) cohen-macauleyness of a shifted
simplicial sphere and (2) the absence in it of σt

tσ
2s
s−1, t+2s = m+1 to prove the

g-conjecture, etc. The attempt in §8 at HI used typing and forms only–just like
now–and the concept later of a reduced deleted join seemed promising as a way
to a generic generalized kuratowki theorem that doesn’t mess around with the
derived at all! There are lots of ?s though scattered. Which had led in §8bis,
maybe to get around the point that type grading does not automatically tell us

10My scanner is slow too, a lot remains to be posted.
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a spanning set is there in each type summand after moving to a new basis from
vertices, to : a star algebra which seems defined with very good motivation, and
(imnsho) just all those coboundaries show virtuosity! Its natural flow however
leads us to a cyclic cohomology.11

− : − : −

Type-shifting over R evokes a continuous finale using: embedding of |Kn| in
2n-space gives a continuous {±1}-map from |K ∗K| to (2n+1)-space minus 0:-
If f embeds |K| in the sum of coordinates one hyperplane A2n ⊂ R2n+1 then
f · f embeds |K · K| in A2n · A2n ⊂ A4n+1 ⊂ R4n+2 = R2n+1 × R2n+1 with
only the diagonal going to the (2n + 1)-dimensional diagonal subspace; so its
restriction composed with the projection on the orthogonal subspace gives us
the required {±1}-map F : |K ∗K| → E2n+1 \ 0.�

Now |K| sits in the hyperplane sum of coefficients one of V = Ω1(K), all
real combinations of its vertices v1, . . . , vN , which is also all real combinations of
the nearby generic vertices ω1, . . . , ωN of the lexicographically first basis |B(K)|
of Ω(K) sitting in the analogous nearby hyperplane. Likewise |K ∗K| and the
realization |B(K ∗K)| of the typewise lexicographically first basis of Ω(K ∗K),
obtained by sieving it under Ω(∆∗∆), sit in nearby affine hyperplanes of V ⊕V
minus the diagonal subspace.12 This typewise bijection K ∗K  B(K ∗K) is
very discontinuous for higher simplices, but it seems |B(K ∗K)| pops up in an
open set U of V ⊕V containing |K∗K| to which the map F into E2n+1\0 extends
equivariantly: otoh if (typed) NHI holds B(K ∗K) contains an antipodal sphere
of dimension > 2n.� For a ‘pleasing pontryagin’ or PP we need also that VKO
is not killed and a variant of type-shifting may be necessary.

− : − : −

Type-shifted B(E) of any Z/2-complex E with fixed subcomplex F , e.g., any
Wu subdivision W (K ·K):- If E is a subcomplex of W (∆ ·∆), i.e., ∆ ∗∆ join
a fixed copy ∆̇ ⊇ F , the type τ of a simplex is the sequence from {+1, 0,−1}
which tells us whether its vertices in increasing order are positive, fixed, or
negative; real13 subspaces spanned by simplices of the same type give Ω(E) =
⊕τΩτ (E); by continuity any perturbation of these vertex decomposable forms

11That talk–see p. 28–on my last day in MLI was from this paper–also 20 of its pages were
circulated ‘for the grudging admiration’ of a handful of colleagues–but the month-long spell
was broken a few hours later when someone carrying a suitcase for a friend walked away from
a baggage belt in Bonn with that containing its diskette etcetra! By the time it found its way
back, more than a month later, my mind had switched to other problems, as well as things
non-mathematical, above all the murders-by-encounter of thousands in the Punjab to which
we soon returned ... So I had gone to Jerusalem in 1994 too ‘cold’ but it started coming back
and again I felt a conceptual understanding of shifting is the key–HI shall then fall out of its
own–while Gil focussed more on that ‘just a bit more’.

12This is true also for B(K) ∗B(K) but the conjecture which follows seems less likely for it;
note also that any Kn ∗Kn can be made in R4n+3 \ 0 and if N ≤ 2n+3 even R2n+2 \ 0, but
what is the best function of N?

13Continuity can be used for completions Qp of Q also, but the result is true even for a field
of coefficients having a big enough degree over its prime subfield.
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gives a graded basis; so all type τ perturbed-vertex decomposable forms give a
spanning set of Ωτ (E); the lexicographically first bases Bτ (E) in these spanning
sets are closed under domination if perturbation is generic over Q.�

− : − : −

All (2n+1)-simplices of types {τ, τ} define a mod 2 equivariant cohomology
class of K ∗K, alternating types give us van Kampen’s characteristic class, the
other classes are trivial:- put vertices on a monotone curve of R2n to immerse
Kn linearly in it and use: n-simplices with vertices from any 2n + 2 points on
curve are on boundary of their octahedral hull, but for the two n-simplices with
vertices alternating on curve, which intersect in it.� Indeed ]m2 [-simplices with
vertices from any N > m points on a monotone curve of Rm are on boundary of
their cyclic polytopal hull, but for those cutting, i.e., having vertices alternating
on curve with the vertices of some [m2 ]-simplex; this gives the ]m2 [-skeleton, so
determines the simplicial structure14 of this (m − 1)-sphere:- for Dancis has
shown this is so15 even for all closed simplicial manifolds.�

− : − : −

A simplicial complex with vertices ordered and closed under domination, i.e.,
a shifted complex Bn has nonzero van Kampen obstruction to embeddability in
R2n iff it contains one of the π(n+ 1) joins

∏
i P

ni−1,
∑

i ni = n+ 1.
A shifted graph B1 other than a subdivided edge uwv contains it only if it

contains the unsubdivided edge uv:- for it is dominated by uw or wv unless w is
smaller than both u and v, then replacing it in these two edges by the smallest
vertex 1 we see 1u and 1v are in graph, which dominate 1w, so it is an edge, which
contradicts w has valence two unless w = 1 and graph is u1v.� So, a nonplanar
shifted graph contains one of the two graphs K5 = P 1 and K3,3 = P 0P 0 without
subdivision; alternatively this also follows, and generalizes to all n as sketched
below, by examining B ∗B under VKO nonzero:-

Equivalently B ∗B has an equivariant (2n+ 1)-dimensional minimal mod 2
cycle—an even number of its simplices incident to any 2n-simplex—connected
by paths of (2n + 1)-simplices sharing 2n-simplices, which has an odd number
of pairs of alternating (2n + 1)-simplices; B being shifted any edge-path in its
closure can be coned over a least vertex; this simple connectivity would allow us
to choose a strictly smaller mod two cycle unless it is a pseudomanifold, that is,
any 2n-simplex is incident to either none or exactly two of its (2n+1)-simplices;
which implies 16 that this subcomplex of B ∗B is one of the π(n+1) antipodal
(2n+1)-spheres

∏
i P

ni ∗
∏

i P
ni .� Also, all π(n+1) complexes are needed, e.g.,

{12, 23, 13} union P 0P 0 = {1, 2, 3}{4, 5, 6}, with this vertex order, is a shifted
nonplanar B1 not containing P 1.

14Cf. my omnibus paper, imho still the best entrée into this whole field.
15See LE, page 12 for a quick proof, and page 10 for Akin’s theorem; mli, page 28 has a new

proof K  B(K) preserves cohen-macaulayness, which for B(K) just says it’s pure, and even
the next result for a shifted B is stated on its page 9.

16See barrick one which underlines the special nature of deleted joins amongst all free Z/2-
simplicial complexes.
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Our motif is that star of David, bounding its convex hull is the deleted join
of P 0 = {1, 2, 3}, so join of 2 hexagons is that of K3,3 = {1, 2, 3}{4, 5, 6}: with
this ordering of vertices K3,3 ∗K3,3 has 2× 9 alternating tetrahedra, remaining
2×9 of the enclosed kind, e.g., 1245 and conjugate, none of the third kind (with
another vertex ordering this distribution can alter): it is not type-shifted and in
trying to make it so we’ll break its spherical 3-cycle: uncontrolled type-shifting
is too drastic, it can make VKO zero.

In fact, only the irreducible antipodal sphere Pn ∗ Pn, atop the convex hull
of the star of Flores—the union of two antipodal (2n + 2)-simplices—is type-
shifted : e.g., the 3-sphere K5 ∗K5 has all five tetraheda of each of the six types,
with deleted join of its polygons 123451 and 135241 conjugate pairs of solid tori,
the latter containing all alternating tetrahedra.

− : − : −

Since then Melikhov has also considered cell complexes whose deleted join is
a (2n+ 1)-sphere, aiming maybe for, not just a generic, but a full classification
of these obstructors in any K ∗K: indeed Stiefel using barycentric derived had
defined characteristic homology classes, but their dual classes were preferred by
Whitney. Also: an (n+1)-manifold has π(n+1) mod 2 characteristic numbers,
and bounds iff they are all zero; characteristic classes are enumerated using cells
of subspaces intersecting a fixed flag in the same way; oriented matroids are but
arrangements of p.l. antipodal hyperspheres; allowing wild hyperspheres here
may be tied to the subtleties unmasked by Pontryagin and Rokhlin’s geometric
method for π4(S2) and π5(S

2).

− : − : −

Post generic type-shifting a complex may no longer be closed under inclusion,
and using its closure is artificial: is there a natural less drastic operation, for not
all Z/2-complexes, but just all deleted joins: a ‘first’ simplicial complex P (K)
on perturbed vertices such that P (K) ∗ P (K) is a basis of Ω(K ∗K), for which
the above π(n+ 1) complexes are ‘final’ ?

For an n-pure K we could temper shifting thus: call vertices primary if they
are first in some n-simplex, secondary if second in some n-simplex ... ; that the
vertices of any ‘final’ have a non-decreasing n+1 colouring suggests we relist the
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primary vertices first, then secondary, and so on; then, in each dimension, sieve
out simplices depending linearly on previous having the same colour sequence;
over R all this is well-defined and extends to Ω(K ∗K) ...

This vertex colouring, obtained from any total order using purity, is hardly
natural; as against this, ever since Poincaré used it to set up an up-down duality
in manifolds, the barycentric derived, with its vertices coloured by dimensions,
has played a key rôle in many contexts, including characteristic classes; here too
the derived of K ·K \ diag seems useful. However any subdivision K ′ followed
by fully generic shifting won’t do: B(K ′) is embeddable in 2n-space for K ‘final’
but not the yin-yang17 complex Pn:- e.g., if B((K3,3)

′) were non-planar it would
contain K5 or K3,3; the first subcomplex is ruled out because its Betti number
b1(K5) = 6 is already bigger than b1(K3,3) = 4, which is preserved by both
subdivision and shifting; the second because it itself is not shifted, and b1 is
bigger for its clusure under domination.�

Maybe sought ‘partial shifting’ P (K ′) of the derived should not only preserve
the Betti numbers of its deleted join but make it colour shifted ? That is, closed
for simplices with lesser vertices of same colours; if so then output for any ‘final’
complex will contain the n + 1 fold join of P 0 = {3points}, e.g.., P ((K5)

′)
with 5 perturbed vertices and 10 barycenters a1, . . . , a5, b1, . . . , b10 of K5 being
connected will contain a5b1, a1b10 and so edges aib1 and a1bj under them; then
all aib2 but we still have only 18 edges because a1b1 and a1b2 occured twice;
this deficit of 2 is made up by the next edge a2b3 and then, skipping other
a2bj for it decreases b3 of the deleted join, the final edge a3b3; so it contains
K3,3 = {a1, a2, a3} · {b1, b2, b3}? But alas, this ain’t so:- this graph has only 114
disjoint pairs of edges–list the 20 edges, count for each subsequent edges disjoint
from it, and add–while (K5)

′ has 150.�
The constraint of a colouring, on top of all disjoint pairs remaining linearly

independent was too much: it renders (K5)
′ rigid; but a P ((K5)

′) without it
contains K5 on its first 5 vertices plus stuff featuring the last 10; the ‘need’ of a
colouring, artificial or not, was a red herring:- we just forgot that an n-complex,
whose deleted join is a (2n + 1)-pseudomanifold, is automatically one of the
π(n+ 1) ‘final’ complexes.�

− : − : −

{All simplicial complexes L on the generic perturbed vertices such that L∗L
is a bigraded basis of Ω(K ∗ K)} is a finite nonempty set because it contains
the perturbation of K, the job is to define P (K) as the ‘least L’ of this set and
show that it has a subcomplex with deleted join a (2n + 1)-pseudomanifold if
and only if van Kampen obstruction of K is nonzero :-

We again deem simplices as increasing words in the perturbed vertices–their
order that of the basis (of their generated vector space V ) of vertices of which
they are perturbations–but coefficients so generic Galois automorphism over Q
can permute this order in any which way–or as exterior monomials in this order

17Meaning a subset of vertices is a simplex iff its complement is not: this usage for RP 2
6 is

in Grothendieck’s Récoltes et Sémailles, CP 2
9 is another nice–usage of Schild (1991)–example,

but the full classification of yin-yang complexes seems to be still open.

42



of their duals; so simplicial complexes as increasing words of increasing words
closed under subwords occuring before or after, like e.g., the subwords ‘alm’ and
‘alms’ of ‘almost’; then B(K) defined before can be seen to be lexicographically
least in {all simplicial complexes L on the generic perturbed vertices such that
L is a graded basis of Ω(K)}, a bigger set because this constraint was milder;
and it is a consequence of its leastness and the genericity of coefficients that
B(K) was closed under domination.�

We cannot expect this fully shifted property to endure for the least L of a
smaller set, that is, under an additional constraint, but it is reasonable to hope
that often leastness and genericity make things simpler:- for example, if the
given K is n-pure then so is its perturbation, and defining least just as above,
but for the set of only all n-pure L which give us a graded basis of Ω(K), we
shall get in general a simplicial complex different from B(K)–it is as mentioned
before the same iff K is Cohen-Macaulay–but it will still be closed under a ‘weak
domination’ in n-simplices by the same galois argument.�What precisely ‘weak
domination’ here and below means we’ll analyze later.

So the cartesian choice for P (K) is the lexicographically least simplicial
complex L on the generic perturbed vertices such that L ∗L is a bigraded basis
of Ω(K ∗ K); also we assume here (2n + 1)-purity of deleted joins which is
stronger than n-purity of complexes; now its leastness and genericity imply that
all top dimensional simplices of P (K) ∗P (K) of the same type are closed under
‘weak domination’; this implies that if NHI holds, i.e., fn(K) ≥ (n+2)fn−1(K),
then it contains Pn ∗ Pn; and also it seems that if VKO of K is nonzero, then
P (K) ∗P (K) contains a (2n+1)-pseudomanifold, i.e., the deleted join of a join
of some yin-yang complexes P j , j ≤ n.�

− : − : −

This game should extend to Cartan’s cup-i products, Steenrod’s reduced
powers, etc.; their combinatorics is beautiful but intricate in K; but upstairs in
the relevant product of K, rather relevant join of K–this segue from affine to
linear to bring out using Galois action the simplification in–a generic least basis,
which suffices up here for we want only to preserve homology (the group action
tied to the operation, e.g., of Z/2 above, went into defining the relevant join)
working always in the good old and big field R of Eudoxus: seems other yin-yang
complexes like RP 2

6 ,CP 2
9 , ... will appear generically when other characteristic

numbers like of Stiefel or Pontryagin are nonzero?

− : − : −

There is a constrained sieving which gives the least L:- For an n-pure K, the
perturbed n-simplices and their new faces, i.e., not faces of any lexicographically
previous n-simplex, form a graded basis of Ω(K): so there exists a sieving of all
n-simplices, i.e., increasing words of length n+1 in these vertices, each admission
with all new subwords, giving the lexicographically least word of these words,
that is, all the top simplices of the n-pure L.� Intuitively K slides down jerkily
but within all n-pure bases to the least generic slot L.
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The first n-simplex is in L:- any n-simplex σ in the perturbed vertices is a
linear combination with all coefficients nonzero in the perturbed n-simplices of
K, but a linear dependency in its faces wedge a form gives σ = 0.�

After this for σ ∈ L we usually need more than: there is no linear dependency
between its new faces and of all those already admitted:- This is needed for the
n-pure simplicial complex being erected to be linearly independent in Ω(K), but
if this alone is our admission criterion, we’ll usually fall short of a basis, e.g., if
K has non-trivial homology in any dimension less than n. This last because by
the same argument as before n-simplices, so using purity all simplices, will be
closed under domination, i.e., we’ll get a shifted n-pure complex. These have
trivial homology in dimensions less than n, indeed links of nonempty simplices
also have homology concentrated only in their top dimensions. What we’ll erect
this way is in fact the subcomplex of B(K) generated by its n-simplices which,
as mentioned before, is strictly smaller, unless the same homological condition
holds for all links of the given n-pure K.� For example, Pn is cohen-macaulay,
but the other kuratowski n-complexes are not.

− : − : −

The original vertices stay put under any field automorphism of R applied to
the generic coefficients of their perturbations, while any permutation π of the
perturbed vertices extends by this galois action to an algebra automorphism of
Ω(K) over Q. Though no longer an algebra basis, the perturbation of the n-pure
K is our primary example of an n-pure simplicial complex P on the perturbed
vertices which is a graded linear basis of Ω(K) over the reals, but then, for any
such P–these can be combinatorially very different from K–any π(P ) is another
but only isomorphic example.�

The ordering of the original vertices passes to their perturbations and singles
out L as the P whose n-simplices as increasing words are lexicographically least:
for π 6= id the isomorph π(L) of L is usually distinct, so bigger.� Focussing
now on shuffles 18 i.e., permutations π order preserving on some subset and its
complement, we saw that the unconstrained least basis B is closed with respect
to downward shuffles of simplices. What about L?

In the unconstrained case B is closed under a downward shuffle π of an n-
simplex σ for otherwise (B\σ)∪π(σ) would be a smaller basis. In the constrained
case the extra condition on π is that after this replacement the total number of
simplices generated by the n-simplices should remain the same.

− : − : −

As for the question above, a downward shuffle θ = π(σ) of an n-simplex of
σ ∈ L is not in L iff replacing σ by θ decreases the total number of faces of top
simplices:- We queue n-simplices in the perturbed vertices in dictionary order
and admit an n-simplex iff (a) it is not a linear combination of those admitted;
so (i) the very first is admitted, and (ii) by taking wedges it follows also that the

18They triangulate a product of simplices and define a wedge product without fractions.
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simplicial complex generated by those admitted is linearly independent in Ω(K);
and (b) after sieving out linearly dependent simplices due to its admission we
should still have a spanning set of Ω(K) furnished by the faces of all admitted or
still standing in queue; this gives L, etc.� On the other hand if we use only (a)
without constraint (b) this gives:- the shifted simplicial complex M generated
by the least generic basis of Ωn(K), which in general is only a graded linearly
independent subset, not a basis of Ω(K).�

Since the van Kampen obstruction (VKO) to the embeddability of our Kn

in 2n-space o(K) resides in the (2n + 1)-dimensional simplices of the deleted
join K ∗K we can assume its (2n+1)-purity which implies n-purity of K.�We
have then the lexicographically least L on the perturbed generic vertices having
a (2n+ 1)-pure L ∗ L bigraded basis of Ω(K ∗K), further it seems o(K) 6= 0 iff
o(L) 6= 0.� Also we have the simpler complex M generated by the least set of
n-simplices on the perturbed vertices such that all ordered disjoint pairs form a
basis of Ωn,n(K ∗K), nowM∗M is only a linearly independent set of Ω(K ∗K),
but even o(K) 6= 0 iff o(M) 6= 0 seems true.�

It seems if an n-simplex is in M then so is any dominated by it provided
replacement by it does not decrease the number of disjoint pairs of n-simplices
while for L an even weaker domination involving the number of total number
of simplices in the deleted join is needed.�

A sieving for the lexicographically least L on the perturbed vertices having
a (2n + 1)-pure L ∗ L bigraded basis of Ω(K ∗ K) when K ∗ K is (2n + 1)-
pure:- at each step (a) choose the first n-simplex which increases the dimension
in Ωn,n(K ∗K) of all disjoint pairs of admiited n-simplices, and (b) that these
with those still unsieved due to this criterion, still generate–like the initial queue
of all n-simplices in the perturbed vertices–a graded spanning set of Ω(K ∗K);
note (i) first two disjoint n-simplices are in L, (ii) wedge product again linear
independence of its faces, but L is closed under a weaker domination: replacing
by the dominated n-simplex should not reduce the number of simplices in the
generated deleted join.�

− : − : −

Replacing an n-simplex θn in a Kuratowski n-complex on some vertices by a
φn not in may not decrease the number of disjoint pairs:- An in n-simplex uses
r vertices of each factor σ2r

r−1 and any disjoint in n-simplex all but one of the
remaining r + 1, so θn has

∏
(r + 1) disjoint in n-simplices. An n-simplex φn

not in uses more from some factor, say σ2r
r−1. If it uses even more than r + 1

there is no disjoint in n-simplex. Now assume it uses r + 1 of just this factor
and s − 1 of a second factor σ2s

s−1. Then any in disjoint n-simplex of complex
uses the r left in first factor and any s of the s+2 left in the second. So number
of disjoint in n-simplices is (unless θn is disjoint to φn, then reduce by 1) given
by replacing (r+1)(s+1) in above by

(
s+2
s

)
: so it is now lesser, equal, or bigger

depending on whether s < 2r, s = 2r or s > 2r.�
We note that in above φn may have just one more vertex from a number of

factors, compensated by one or more less from as many or a smaller number of
other factors. Anyway, since s < 2r does not hold for r = 1, s = 2, we can’t
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expect σ2
0 · σ4

1 to be Z/2-shifted, i.e., closed with respect to weak domination–a
dominated simplex is also in unless replacement by it reduces the number of
disjoint pairs–with respect to all vertex orders. On the other hand σ2r

r−1 · σ2r
r−1

is Z/2-shifted for all vertex orders but is not {1}-shifted, that is shifted, for any.
More generally, pushing above calculation: the t-fold join of σ2r

r−1 is Z/2-shifted
for any t with respect to all vertex orders.

− : − : −
Vertex orders, in which all n-simplices, as an increasing word of increasing

words, is lexicographically least, are as follows, for a Kuratowski n-complex:- Our
cue, for K3,3 = σ2

0 ·σ2
0 such an order is {1, 5, 6}·{2, 3, 4} : both factors being same

any vertex can be first, if it is in the first factor to use the least words with it the
next three must be all of the second, and the last two the remaining vertices of
the first factor. Similarly for σ2s

s−1 ·σ2r
r−1 except if s < r the first s vertices must

be any of the first factor, then all 2r + 1 of the second in any order, and lastly
the remaining s + 1 of the first factor. More generally, write any Kuratowski
complex so that the dimensions of the factors are non-decreasing, and assume
known a required vertex sequence for the complex obtained by omitting the first
factor σ2s

s−1, then put before and after this sequence, respectively, any s and the
remaining s+ 1 vertices of this factor.�

Alas! the Kuratowki 2-complex σ2
0 · σ4

1 is not Z/2-shifted with this vertex
order, e.g., the replacement of the triangle 568 in complex by the non-disjoint
dominated triangle 148 having two vertices in the first factor keeps the number
of disjoint pairs of triangles same. So we’ll dump this notion of leastness, such a
replacement destroys the obstructing antipodal 5-sphere K ∗K which any linear
Z/2-sieving worth its name should not do. Shown next is a vertex order which
minimizes the number of first vertices of triangles, it does not work either; but
the vertex order in orange, i.e., minimizing the number of last vertices of the
triangles of σ2

0 · σ4
1 makes it Z/2-shifted!

More generally, any Kuratowski n-complex is Z/2-shifted with respect to any
vertex order giving precedence to its higher dimensional factors:- Again, let θn
be in complex, and φn not in it which is disjoint to at least one n-simplex of
complex. If φn < θn with respect to such a vertex order, for each σ2s

s−1 in which
φn has t less vertices than s, we can count off t other factors σ2r

r−1, all with
r ≥ s, in each of which φn has r + 1 vertices. The result follows now from
(s+ 1)t+1 > ( s

t+1 + 1)( st + 1) · · · (s+ 1) =
(
s+t+1

s

)
.�

− : − : −
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The above suggests we seek some nice vertex orders, that are well-defined for
any pure n-dimensional simplicial complex K, and which, when it is Kuratowski,
perforce give precedence to its higher dimensional factors.

A first tentative is this:- with vertices (totally) ordered last vertex of any n-
simplex makes sense, so the number of vertices that occur last in some n-simplex;
for any vertex order which minimizes this number we consider the number of
vertices that occur second last in some n-simplex; then for any vertex order
which also minimizes this second number we consider … should the orders left
after this iterated minimization be deemed nice?

A more constructive recipe emerges if we muse over this question for Example:
σ2r
r−1 ·σ2s

s−1, r+ s = n+1, r ≥ s:- The number of n-simplices incident to a vertex
in the second factor is

(
2r+1

r

)(
2s
s−1

)
, which divided by

(
2r
r−1

)(
2s+1

s

)
, the number

incident to a vertex in the first factor, gives us (2r+1)(s+1)
(r+1)(2s+1) , which is bigger than

one if and only if r > s. This suggests that if r > s the highest vertex ought to
be chosen from the second factor; if r = s it can be from either but switching
factors if need be we’ll make it the second.

Then we count the number of n-simplices, not containing the already chosen
highest vertex, and incident to a given vertex: if this vertex is in the second
factor this number is

(
2r+1

r

)(
2s−1
s−1

)
and if in the first factor then

(
2r
r−1

)(
2s
s

)
which

is smaller. So the second highest vertex ought also be chosen from the second
factor. The same criterion–the biggest number of incident n-simplices containing
none of the already chosen higher vertices–dictates that the s+2 highest vertices
be all chosen from the second factor because

(
2r+1

r

)(
2s−t
s−1

)
÷

(
2r
r−1

)(
2s−t+1

s

)
=

(2r+1)÷r
(2s−t+1)÷s > 1∀ 1 ≤ t ≤ s+ 1, in fact for all t ≥ 1.

But, with only s− 1 vertices left unchosen in this factor, we need to switch
to counting number of n-simplices, containing exactly one of the chosen, and
incident to a given vertex: if this vertex is in the second factor this number is
(s + 2)

(
2r+1

r

)
, and if in the first factor only (s + 2)

(
2r
r−1

)
, so the choice of the

next highest vertex must also be from the second factor. In the order being
constructed this will be the highest vertex which does not occur last in any
n-simplex, but occurs as the second last of some n-simplex.

Also, for this particular example, the only vertex of this type, because now
we have only s− 2 vertices of this factor in hand. So we switch now to counting
number of n-simplices, containing exactly two of the already chosen ones, and
incident to a given vertex, etc. We see that the 2s+1 highest vertices ought all
be chosen from the second factor. The remaining 2r+1 vertices, all of the first
factor, can be labelled in any which way.�

The recipe given in the above example defines: vertex orders for any pure
simplicial n-complex, which, if it is Kuratowki, automatically display its factors
with dimension non-increasing:- The criterion for the highest vertex shows it
must be in a lowest dimensional factor σ2s

s−1. From this and using the same
inequalities–now σ2r

r−1 is any of the other factors–the critera laid down for the
second highest vertex, third highest vertex, etc., show that the 2s + 1 highest
vertices must be all from σ2s

s−1. Deleting this factor this reduces us to the same
result for a Kuratowski complex of lesser dimension equipped with a vertex
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order constructed using the same recipe.�
So should we call orders cooked by this recipe nice? 19 Provisionally we shall,

but it is best to keep options open: enough for the moment that there is a simple
definition answering our requirements, but as this analysis proceeds, it is quite
on the cards that we might add desiderata.

− : − : −

More generally, for K any Pontryagin n-complex, i.e., a join of some yin-yang
complexes, nice vertex orders automatically display its nice factors with number
of top simplices non-increasing, e.g., a factor RP 2

6 will come after a factor σ6
2

because it has less 2-simplices, likewise CP 2
9 after σ10

4 .
Is its deleted join K∗ a pseudomanifold iff K is Pontryagin? ‘If’ is easy and

‘only if’ was proved, for dim(K∗) = 2n + 1, in barrick one. With the hope of
removing this restriction we’ll now analyze that argument :-

− : − : −

(1.2) Notation. Also we’ll call K yin-yang or nice iff for any partition of its
vertices into two nonempty parts, one and only one part is in it. So, a closed
n-simplex is not nice for n > 0 – indeed a nice complex factors as a join iff it is a
cone over a nice complex other than {pt}, which is vacuously nice – but being the
(n+1)-fold join of the closed 0-simplex its deleted join is the octahedral n-sphere.
Conversely, if the deleted join K∗ of an n-complex K is an n-pseudomanifold,
K cannot be strictly bigger than a closed n-simplex because then dim(K∗) > n,
nor smaller because the octahedral n-sphere does not properly contain another
n-pseudomanifold. So ‘only if’ is true for dim(K∗) = n.� So from here on in our
analysis dim(K∗) = m where n < m ≤ 2n + 1; also dimensionally homogenous
will be usually replaced by the synonym pure.

− : − : −

If K∗ is an m-pseudomanifold with least vertices is K nice? The m-purity
of K∗ does not imply n-purity of K for m < 2n+ 1, but, since n < m, for any
inclusion maximal top simplex ω ∈ K, there is an m-simplex (ω, ϕ) ∈ K∗ with
ϕ ∈ K nonempty, and, incident to any (ω, ϕ \ v) one other m-simplex (ω, ϕ′)
of this m-pseudomanifold. So K has at least m + 2 vertices. Conversely, if K
has m + 2 vertices, the complementary set of vertices ωc can’t be in K, but
all its facets ϕ,ϕ′, ... are in K and [K \ ω] = ∂(ωc). Is this the same as saying
that K is nice? Anyway given a partition {α1, α2} of all m + 2 vertices and
any m-simplex (σ1, σ2) ∈ K∗ by replacing the latter by an adjacent m-simplex
using the (m+2)th vertex available we can step-by-step improve the imbalance

19For such questions it should help to think of an order as a Morse function ξ, i.e., build K
step by step by adding the sets Kv of all simplices with v as their biggest vertex; so the Euler
characteristic—the additive invariant e which is ±1 on open cells depending on whether their
dimension is even or odd—satisfies e(K) = Σve(Kv). When K is a manifold e(Kv) = 0 or ±1
with Kv an open cell in the latter case, and v is called a critical point of index r if this cell
has dimension r; see Banchoff (1967), who writes e(Kv) as a(v, ξ), for more.
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with respect to the partition to reach an m-simplex of K∗ such that one of these
disjoint simplices of K contains the smaller part.

(2.1) The case m = 2n+1 in the paper is special because now the purity of
K∗ implies 20 the purity of K. Also K∗ pseudomanifold implies any σn−1 ∈ K
has at least 3 and at most n+ 3 vertices v as its link. Because any 2n-simplex
(σ, ω), v ∈ ω of K∗ has at most n vertices other than v in ω. Further 21 if a
σn−1 has n + 3 vertices in its link there is no vertex w of K outside its star!
Because then a 2n-simplex (σ, ϕ), w ∈ ϕ of K∗ would have valence bigger than
2. That is K ⊆ τ2n+2

n , where τ2n+2 = SKσ. So K = τ2n+2
n because no (2n+1)-

pseudomanifold is properly contained in (τ2n+2
n )∗ since its top simplices can be

joined to each other via codimension one simplices (in fact as we’ll presently see
it is an antipodal simplicial sphere, one of many).� Most apt would be a like
jlt proof that K∗ any m-pseudomanifold, n < m ≤ 2n+1, implies the finiteness
of vert(K), before going to the join factorization of K.

− : − : −

These join-irreducible factors, i.e., simplicial n-complexes withm+2 vertices,
n < m ≤ 2n+1, whose deleted join is an m-pseudomanifold, are legion, but are
possibly all tied as follows to a very simple one, viz., the disjoint union of the
boundary of an m-simplex and a point:- This (m−1)-complex ∂(σm)∪{pt} has
m+2 vertices, is nice, and its deleted join is the octahedral m-sphere with a pair
of its m-simplices derived. All yin-yang complexes K may be obtainable from
these by moves in each of which we replace a top simplex ω by ωc. The surgery
on the deleted join induced by each move then shows that the m-pseudomanifold
K∗ is in fact an antipodal m-sphere.�

For m = 1 there is no move to make on ∂(12) ∪ {3} = {1, 2, 3}, i.e., σ2
0 ,

whose deleted join is a hexagon. For m = 2 besides ∂(123) ∪ {4} with deleted
join the octahedral 2-sphere (123)∗ with triangle 123 derived at 4 and 123 at 4,
a move gives also triode whose deleted join is the suspension of a hexagon. Next
six non-isomorphic antipodal simplicial 3-spheres, including (σ4

1)∗, the shortest
sequence of moves from ∂(1234) ∪ {5} to σ4

1 being to replace one after another
the four triangles by the four complementary edges incident to 5. Similarly for
m = 2n+1 we can move ∂(σm)∪{pt} to the unique least dimensional σ2n+2

n by
replacing one by one all (m− 1)-simplices, then all (m− 2)-simplices, ..., finally
(n+ 1)-simplices by their complementary simplices.

20This is obvious; not so obvious is what is shown later using K∗ pseudomanifold fully, viz.,
that any full subcomplex of K is pure, i.e, that K is a matroid; for n < m < 2n+1 a parallel
argument on K∗ itself, using oriented or Z/2-matroids, may work.

21This dramatic point signalled K∗ pseudomanifold is a very tight condition, but I was not
able to close the deal as elegantly, and will need to check my NB to see if I had at least got
vert(K) always finite just like that? Using a nice order a simpler reasoning avoiding matroids
altogether may in fact fully join factorize K for all n < m ≤ 2n+ 1.
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If we insist that not only K∗ but also that K be a pseudomanifold (is such a K
perforce a manifold?) then only a handful of examples is known:- The first with
K∗ an antipodal 4-sphere can be obtained by replacing one by one all tetrahedra
of ∂(12345)∪{6} by the five complementary edges joining 6 to the other vertices,
and then replacing five triangles too by complementary triangles to make link of
6 a pentagon: as shown above this K = RP 2

6 . The next, with K∗ an antipodal 7-
sphere, can be made similarly from ∂(12345678)∪{9} so that the link of 9 is the
unique neighbourly non-polytopal 8-vertex 3-sphere. Or, the machine can start
from σ8

3 and replace, guided by the pseudomanifold condition on K we want,
36 of its

(
9
4

)
= 126 tetrahedra by their complementary 4-simplices. Kühnel

and Banchoff (1983) remains the best account of this K = CP 2
9 including a

simplicial analogue CP 2
9 → S4

6 of the result that the complex projective plane
divided by complex conjugation gives the 4-sphere. So we also get a simplicial
analogue of the fact that S7 is homeomorphic–but not diffeomorphic as Milnor
showed using Pontryagin numbers–to the unit tangent bundle of S4. The last
three known all have 15 vertices–so K∗ is an antipodal 13-sphere–and seem to
be triangulations of the projective quaternionic plane. Despite this paucity of
known examples imho 22 23 are many more, maybe even infinitely many, but a
Dynkin diagram type classification can be worked out.

− : − : −

(2.2) If K∗ is a (2n + 1)-pseudomanifold then, for all σn−1 ∈ K, θn ∈ K
and λ ∈ LKσ \ θ, the simplex (σ \ θ) · (LKσ \ θ \ λ) lies in K. 24

Indeed if σ ∩ θ has t vertices, then Lσ \ θ has at least 2 and at most t + 2,
with all proper faces in it, but (2.5) Lσ \ θ itself is not in Lk(σ \ θ):-

22Otoh Datta has opined that any y-y pseudomanifold Y is perforce a manifold. If so duality
plus the observation that the Euler characterstic of any y-y complex is odd show Y must be a
non-spherical manifold with “few vertices”, i.e. no more than 3

2
dimY + 3. As Brehm-Kühnel

checked these admit a Morse function with exactly three critical points. So Y belongs to a
handful of such manifolds allowed by the Hopf invariant one theorem of Adams, and studied
in some detail by Eells-Kuiper (1961-2). So on second thoughts maybe there are only finitely
many pure y-y complexes Y in which all codimension one simplices have the same valence t,
the case t = 2 being that of pseudomanifolds?

23The deleted join Y ∗ Y of a y-y complex occurs as the boundary of an (m + 1)-polytope
with 2(m+2) vertices iff Y is tight in this affine space: cycles contained in and not bounding
in its intersection with a half space are non-trivial.

24I.e., the link of σ \ θ contains ∂(Lσ \ θ). So K is a matroid. Then in (2.5) of paper this
result is shown the best possible, i.e., the link of σ \ θ does not contain Lσ \ θ. Which enables
us to identify the maximal subsets of vertices joinable to each other via the hollow simplices
or circuits of K as the subsets spanning its factors σ2s

s−1.
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If t = 0, i.e., σ is disjoint from θ, this is the pseudomanifold property of the
deleted join: Lσ \ θ = {λ1, λ2}, the 2 vertices in the link of σ not in θ but the
edge λ1λ2 is not in it because K has no simplex with n+ 2 vertices.

If t = 1, i.e., σ ∩ θ = {v}, using purity of K∗ let us replace θn by an ξn ∈ K
containing θ \ v and disjoint from σ.

If ξ has its new vertex w not in Lσ using K∗ pseudomanifold we see that
Lσ \ θ = Lσ \ ξ = {λ1, λ2}, just 2 vertices. If λ1λ2σ \ v were an n-simplex of
K, for the same reason we would have a u /∈ θ, u 6= λ1 such that uλ2σ \ v ∈ K.
Then a w′ /∈ uλ2σ\v, w′ 6= v such that θ′ = w′.(θ\v) is in K. Also we can’t have
w′ = λ1 for then σ would have only λ2 in its link outside the disjoint n-simplex
θ′. So the 3 vertices v, λ1 and u in the link of λ2σ \ v are distinct and outside
the disjoint n-simplex θ′ which is not possible.

If ξ has new vertex w = λ1 in Lσ then Lσ \ θ = {λ1, λ2, λ3} has 3 vertices,
with λ2 resp.λ3 also new vertices of n-simplices ξ′ resp. ξ′′ containing θ \ v and
disjoint from σ, else the 2n-simplex (λ3σ, θ\v) resp. (λ2σ, θ\v) of K∗ has valence
one. So θ\v has besides v all three λi in its link, therefore any n-simplex β of K
disjoint from θ contains all but one λi. So the triangle Lσ\θ is not even a simplex
of K, but all its three edges must be, to provide the requisite 1-pseudomanifold
link of the (2n− 1)-simplex (α, θ), α = σ \ v of the (2n+1)-pseudomanifold K∗,
viz., the hollow triangle ∂(Lσ \ θ).

After a short break we’ll see this proof extends to t = 2, 3 . . .

− : − : −

As this installment has been delayed too much, I’ll post it now even amidst
this analysis within … but probably will be making additions and changes, save
in its final two pages, before moving on … also my aim is if possible self-contained
polished expositions of some results later.

K S Sarkaria July 5, 2022

− : − : −

The pure yin-yang manifold RP 2
6 is not a matroid :- the full subcomplex on

any 4 vertices is not pure: it has all 6 edges but only two of the 4 triangles, so
has an edge not incident to a triangle.� Likewise CP 2

9 and HP 2
15 are not–indeed

a matroid has non-trivial homology only in its top dimension–and maybe there
is not much left to add to barrick one if we only want to find all matroids with
deleted join a pseudomanifold? Probably this happens iff matroidal components
are all yin-yang, however we’ll keep going for the full conjecture, viz., K∗ is a
pseudomanifold iff K is Pontryagin. With this aim we are trying to make that
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old proof clearer and matroid theory free, though another and oriented matroid
seems tied to the generalization, but let’s see 25 ...

− : − : −

If t > 1 and v ∈ σ∩ θ we replace θ by an ξ containing θ \ v and disjoint from
v.(σ \ θ), so σ ∩ ξ = σ ∩ θ \ v has t− 1 vertices.

If ξ has its new vertex w not in Lσ then Lσ \ θ = Lσ \ ξ has inductively at
most t+1 vertices with all proper faces in the link of v.(σ \ θ)—so in the link of
σ\θ—but v.(σ\θ).(Lσ\θ) is not in K. We claim that even γ = (σ\θ).(Lσ\θ) is
not in K. Were γ an n-simplex of K we replace any λ ∈ Lσ \ θ in it by a vertex
u 6= λ to get another n-simplex γ′ still disjoint from θ. Then we replace v in θ
by a vertex w′ 6= v to get another n-simplex θ′ also like θ disjoint from γ′. If
w′ 6= λ, the (n− 1)-simplex γ \λ disjoint from θ′ has three distinct vertices v, λ
and u in its link outside θ′. And, if w′ = λ, the inductive hypothesis for t− 1 is
violated: σ∩θ′ has cardinality t−1 with σ\θ′ = v.(σ\θ) and Lσ\θ′ = Lσ\θ\λ
but their join is in K. In case γ has dimension less than n we argue likewise on
an incident n-simplex γ̃ still disjoint from θ.

If no ξ has its new vertex w outside Lσ using inductive hypothesis on σ and
ξ we know Lσ \ ξ = Lσ \ θ \w has at least 2 but at most t+ 1 vertices with all
proper subsets in the link of σ \ ξ = v.(σ \ θ). In fact any λ 6= w in Lσ \ θ is also
the new vertex of some ξ′, otherwise any 2n-simplex (θ \ v, β) of K∗ containing
(θ\v, v.(σ \θ).(Lσ \θ\{w, λ}) has valence one; so any n-simplex β of K disjoint
from θ contains all but one of the vertices of Lσ \θ. In particular Lσ \θ is not a
simplex of K, but any n-simplex disjoint from θ containing σ \ θ can be written
α.(Lσ \ θ \λ); and, the link of (α, θ) ∈ K∗ being a pseudomanifold of dimension
two less than the cardinality of Lσ \ θ, all λ ∈ Lσ \ θ must occur thus, i.e., all
proper faces of Lσ \ θ are in the link of σ \ θ.�

− : − : −

A triangulable space comes stratified by intrinsic dimension, and admits full
subcomplexes covering lower dimensional strata; so fullness is natural; and so
for starters are complexes with all full subcomplexes dimensionally homogenous,
i.e., matroids; so, as well, in the context of a group action, G-complexes with all
full G-subcomplexes pure: and maybe for G = Z/2 these are again only oriented
matroids? However we’ll stay away from these turbid waters yet; we’ll go where
analogous arguments take us starting from the more general hypothesis K∗ an
m-pseudomanifold, n < m ≤ 2n+ 1 26 ...

− : − : −

So, resuming our analysis of barrick one, recall by (2.1) we are done if any
σn−1 has 2n+3 vertices in its star; otherwise Sσ is a proper subset of all vertices;
so, it suffices to show the vertices of some factor are all in Sσ:- for, if K = L ·N ,

25ici aussi time slows down ...
26et ici, two “lectures” on shadows and reflections ...
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the easily verified (but very useful!) join formula K∗ = L∗ ·N∗ tells us that K∗
is a highest possible dimensional pseudomanifold iff both L∗ and N∗ also are,
so an induction on the dimension of K takes us home.� To show this we’ll use
(2.2+5) and the following, also implicit in (2.7) of paper.

− : − : −

There is another definition of join irreducible factors, having at least two
vertices, which but for a single word–hollow–is just like that of path components!
Two vertices are in the same factor if and only if we can go from one to the other
such that successive vertices are in the same hollow simplex, i.e., a simplex itself
not in K, but all its proper faces are:- Let L, resp.N , be the full subcomplex of
K on such an equivalence class of vertices, resp. its complement; then K ⊆ L ·N
is trivial, and L ·N ⊆ K holds because if some α ·β with α ∈ L and β ∈ N were
not in K, it contains a hollow simplex of K with one vertex in the equivalence
class and another outside it.�

− : − : −

This result shows up to permutations the complete join factorization of any
simplicial complex K is unique and tied to its hollow simplices or circuits. The
subcomplex of all proper faces of all circuits is usually strictly smaller even if K is
circuit-connected, i.e., join-irreducible. Indeed even if K is a yin-yang complex,
for example for RP 2

6 this subcomplex is patently 1-dimensional. Circuits being
the complements of their maximal simplices, what is true is that all yin-yang
complexes, so also their joins, i.e. (conjecturally 27 )all Pontryagin complexes are
determined by their circuits. Hollow simplices also figured in a nice result of
Dancis, viz., a simplicial m-manifold is determined by its ]m2 [-skeleton:- because,
from here on, Poincaré duality 28 tells us exactly which hollow simplices to fill
to build back the entire complex.�

− : − : −

To wrap-up we recall how (2.2+5) was used in the paper:- From K∗ a (2n+1)-
pseudomanifold it is easily seen that no Lσ \λ is in K; this and (2.2) applied to
σn−1 = ωn\u and θn shows that (2.3) K is a matroid, i.e., if we imagine vert(K)
as all columns of a matrix such that a set of columns is linearly independent iff
it is in K, the basic property of linear independence–given any two bases ω and
θ any u ∈ ω \ θ can be replaced by some v ∈ θ \ ω to get another basis–holds.
So hold as well for our K all theorems 29 formally deducible from it. Notably,

27this if we deem K to be Pontryagin iff K ∗K is a pseudomanifold : this definition extends
naturally to groups G ̸= Z2.

28otoh an Alexander duality holds for a join K of yin-yang complexes:- we can retract its
complement in the sphere |K ∗K| onto its copy |K| because any point not in it lies on a unique
half-open interval (x, y] where x ∈ |K| and y ∈ |K|.

29Whitney’s neat 25-page paper of 1935 is still best: its theorem 19 is transitivity of in same
circuit, its §16 shows matrices have ‘other theorems’ by a matroid K2 whose 7 vertices cannot
arise as columns of any matrix over any field with 2 ̸= 0, its appendix characterizes those
arising thus over {0, 1}, etc.
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if u and v are in a minimal dependent set of columns, and v and w in another,
then u and w are also in such a set of columns, i.e., the transitivity of the binary
relation “u, v in same circuit” holds for K.30 Likewise, that any independent set
or simplex can be augmented by vertices from any basis or n-simplex to make
another n-simplex, which is used in (2.4) to precise, all proper faces of Lσ \ λ
are in K, which is immediate from (2.2), to: a subset of vertices is a circuit
iff it is an Lσ \ λ. Then, using transitivity of in same circuit, in (2.6) it is
deduced from (2.2) and (2.5) that: if v ∈ Lσ, its circuit-component, that is all
vertices of the factor of K in which v lies, is contained in Sσ; in fact the proof
shows the circuit-component of v is the intersection of all Sσ as we run over all
(n− 1)-simplices σ that have v in their link.�

− : − : −

Apparently Whitney introduced matroids in 1935 while analysing arguments
he used in a 1932 paper for a new planarity criterion for graphs 31 maybe to link
it more tightly with that of Pontryagin and Kuratowski, and push at least some
part to higher dimensions; and indeed his name like Pontryagin’s is also tied to
the theory of characteristic classes, which accomplished a lot, but dually, using
obstructing cocyles; otoh, our aim is to revert to homology, but be content with
Galois genericity, in which context we hope to see not only phantom riders like
Pontryagin numbers, but pretty yin-yang carriers like CP 2

9 themselves to emerge
from the mist with cartesian naturality!

− : − : −

So, K∗ a (2n + 1)-pseudomanifold implies K ·K is a matroid:- indeed the
join of any 32 number of disjoint copies gK, g ∈ G of K has all full subcomplexes
pure if and only if K has this property.�

Notation. Below we’ll often use a capital letter Σ for the union (α, β) of the
first and second copy of subsets α and β of vertices, Σ = (β, α) for its antipode,
the two-fold join K ·K of K has all Σ such that α, β ∈ K, and its deleted join
K∗ or K ∗K ⊂ K ·K is the subcomplex given by Σ ∩ Σ = ∅. So associating to
any Σ the complement of Σ∩Σ, i.e., the map Σ 7→ Σ\Σ or (α, β) 7→ (α\β, β\α)
equivariantly retracts the set K ·K onto its subset K ∗K but it is not monotone:

30More generally K∗ any pseudomanifold should imply the binary relation “Ci, Cj intersect”
on circuits is transitive, so any two circuits of any factor of K intersect, and indeed it is true
that any two circuits of a yin-yang complex intersect.

31By 1931, after a thesis under Birkhoff on chromatic polynomials, Whitney had shown that
if a simplicial 2-sphere has no hollow triangles then it is hamiltonian (by squeezing a lemma
in this paper it is known now that this conclusion is still true if there are up to five hollow
triangles, but may be false if there are six); which reduces proving the four colour theorem
to simplicial 2-spheres obtained by gluing two simplicial closed disks with all vertices on their
common boundary polygon; but note if we well colour the vertices of the two disks with three
colours in general all nine ordered pairs of these are needed.

32If the fully deleted G-fold join of K is a pseudomanifold of the highest dimension, it seems
(2.2+5) generalizes with similar conclusions, K a matroid, etc., and a similar classification,
however our policy here is not to be tempted away by any low hanging fruit under the purview
of the third part of our barrick trilogy.
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it does not commute with inclusion; this combinatorial retraction underlies how
uncannily just this subcomplex being a pseudomanifold of the highest possible
dimension 2n+ 1 influences the entire two-fold join!

Otoh, when K ∗ K is a pseudomanifold of a lower dimension m, even the
m-skeleton of K ·K is seldom a matroid:- for now dim(K) ≤ m, so this would
imply K a matroid, which we’ve seen is not usually so.� However we hope to
show below that K ·K is still a lot like a matroid.

− : − : −

If K ∗K is an m-pseudomanifold, for m = 2n+1 we saw that no nonempty
Lα \ λ, α ∈ K is in K, and the minimal such, i.e., if dim(α) = n− 1, gave us all
the circuits of K; but, for m < 2n+1 a nonempty Lα, α ∈ K may be in K:- for
example ∂(σm) ∪ pt and RP 2

6 have smallest nonempty Lα’s consisting of just
two vertices, and that edge is also in these yin-yang complexes.�

In the hope that the pairs version of the above for m = 2n + 1, viz., the
smallest nonempty LΣ \ λ,Σ ∈ K ·K are the circuits of K ·K, extends in some
way – note LΣ = (Lα,Lβ) if Σ = (α, β) ∈ K ·K – we now ask

Q. Does K ∗ K an m-pseudomanifold imply: for any Σm−1 in K · K, the
join of Σ \ Σ with any subset LΣ \ Σ \ λ of, but not with LΣ \ Σ, is in it? If
Σm−1 ∈ K ∗K then yes:- now Σ \Σ = Σ, and the m-pseudomanifold condition
tells us LΣ\Σ has 2 vertices but the join of Σ with this edge is not in K ·K. Also,
for m = 2n + 1, this is just a reformulation of (2.2+5):- say Σ = (σn−1, θn),
then LΣ = (Lσ, ∅), so Σ \ Σ = (σ \ θ, θ \ σ) and LΣ \ Σ = (Lσ \ θ, ∅).� So
maybe a similar induction shows the answer is yes in general, but let’s first look
at some consequences it would have.

− : − : −

∀Ωm ∈ K ·K,u ∈ Ω \Ω ∃v ∈ Ω \Ω s.t.(Ω \u)∪ v ∈ K ·K:- If no such v, first
part of assumed Q for Σ = Ω \ u gives (Σ \Σ) · (LΣ \Σ \ λ = LΣ \ λ) ∈ K ·K,
but second seems to imply (Σ \ Σ) · (LΣ \ λ) /∈ K ·K ∀ Σm−1 ∈ K ·K …

In barrick one for m = 2n+1 we had first proved first part of Q, viz., (2.2),
and more than above ‘seems’ was directly available which we saw in last item
is untrue for smaller m, but this does not exclude ‘seems’ from second part of
Q, which in that paper was (2.5) later; but maybe combined statement (2.2+5)
contains ‘K a matroid’ in it?

Alas, pairs reformulation of (2.1)–any Σ2n ∈ K · K has valence at least 3
and at most n+3 = m

2 + 5
2 , etc.—is as such also false for m < 2n+1:- Yin-yang

K = ∂(σm) ∪ {pt} has K ∗ K an m-sphere, but Σm−1 = (α, β) ∈ K · K has
valence 2 if α or β = {pt}; if α and β are nonempty faces of σm with i and m− i
vertices then Lα and Lβ have m + 1 − i and i + 1 vertices, so LΣ has m + 2
vertices; and if α or β is empty then also m+ 2. Again, K = RP 2

6 has K ∗K a
4-sphere, but Σ3 ∈ K ·K has valence 4 if α and β are edges, or valence 6 if one
is a triangle and other a vertex of K.�

Indeed Q also has answer no:- e.g., if K = RP 2
6 and Σ3 = (α, α) ∈ K · K

with α any edge of K, then Σ \Σ is empty, but LΣ \Σ = (β, β) where β is the
edge of K having the two vertices in Lα sure is in K ·K.�
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So the steps we took to do case m = 2n+1 don’t generalise; more positively:
is there a simple general way we didn’t take? Not using a nice order, which lies
more in the province of barrick two, i.e., genericity.

− : − : −

Starting afresh, we are given a simplicial complex K such that K ∗K is a
pseudomanifold. Consider the complete join factorization of K. It follows by
the join formula that the deleted join of each factor is a pseudomanifold. So our
job is: to show that a join-irreducible K with K ∗K an m-pseudomanifold has
m+ 2 vertices and is a nice or yin-yang complex.

We saw that join-irreducible is same as saying we can go from any vertex to
any other such that consecutive vertices belong to a circuit. This suggests that
we start with the m vertices of K in any Σm−1 ∈ K ∗K plus the two in its link.
We want to show these are all the vertices of K. If there is an (m+3)rd vertex
using circuit-connectivity we need to show that either K ∗K is not m-pure or
has an (m− 1)-simplex with valence not equal to two.

Looking first at small m should clarify more, but only after a short break 33

here will we resume these cogitations.

sarkaria_2000@yahoo.com September 16, 2022

− : − : −

September 22, 2022 : Z’s birthday sketch done, so short break is now over,
during which also mulled asides Paper Boat and Religious Orientations : both
shall be mathematical only, but with some other end-notes. 34

− : − : −

We are assuming m > dim(K); so, if K has an (m−1)-simplex α, then it does
have m+2 vertices:- for (α, ∅) ∈ K ∗K has 2 vertices in its link. More generally,
the subcomplex complementing any maximal simplex α of K is a pseudomanifold
[K \α] of dimension m−dim(α)−1. Also, if K is join-factorizable 35 so are all
these pseudomanifolds [K \α]:- maximal simplices of a join are joins of maximal
simplices of its factors, with these complementing pseudomanifolds joins of their
complements.� Conversely if K is join-irreducible our job is to show they are
not just irreducible but spheres with the least number of vertices. Anyway we
are now reduced to n < m − 1 < 2n, so we’ll start with (n,m) = (2, 4), and it
seems the above constraints should suffice to show there are only finitely many
Kn with K ∗K an m-pseudomanifold … 36

− : − : −
33Hauptsächlich für etwas Skizzen und Papierschiffchen.
34Also saw a krait on beesmukhi today.
35with neither factor a point
36here also sUrj pirQ`vI dy igrd Gumdw hY
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There are only finitely manyK2 with K∗K a 4-pseudomanifold: such a K has
at most 7 vertices:- If K has a maximal edge α its [K \α] is a 2-pseudomanifold;
if it has a singular vertex, or is non-singular with more than 5 vertices, it has–
look at it à la Schlegel–a disjoint pair of triangles 37 which is a no-no because
K∗ is 4-dimensional; so [K \ α] = S2

4 or S2
5 .

Otherwise any maximal α ∈ K is a triangle, and being a 1-manifold [K \α] is
a disjoint union of polygons. Any ordered pair (σ, θ) of disjoint edges of [K \α]
gives a 3-simplex of K ∗K; since it has valence 2, both edges must be incident to
only one triangle, and for these 2 triangles to be not disjoint their third vertices
vσ, vθ ∈ α must be the same. Unless [K \ α] is a single polygon with at most 4
vertices: given any two adjacent edges σ and σ′, amongst edges θ disjoint from
σ there is one also disjoint from σ′; so K2 is the cone over a v ∈ α of its opposite
edge and these polygons; which is not possible because [K \ β] is not a union of
polygons for any triangle β 6= α. \blacksquare 38

A yin-yang K2

Examples. The cone of y-y ∂σ3 ∪ {pt} gives a y-y K3 with one maximal
edge complemented by ∂σ3 = S2

4 ; otoh {three points} joined to ∂σ2 ∪ {pt} is
a 7-vertex K2 with all three maximal edges complemented by the join of the
{other two points} and ∂σ2, i.e., an S2

5 ; and {pt} · {3 pts} · {3 pts } is a pure
7-vertex K2 with all triangles complemented by 4-gons {2 pts}·{2 pts}. Besides
RP 2

6 there are other (non-manifold) join-irreducible 6-vertex yin-yang K2 with
triangles complemented by 3-gons, and a maximal edge if any complemented by
an S2

4 . At first flush it seems, for example, that the K2 above with maximal edge
56, obtained from RP 2

6 by replacing its incident triangles by their complements,
embeds in R3. For, minus this edge, it is but ∂(1234) union cones over 5 and 6 of
the edge paths 12, 23, 34 and 14, 32, 24 from 1 to 4. However this edge forces us
to erect these two cones on the same side of the tetrahedral boundary, and this

37but some triangles may not be disjoint from any other, e.g., the two unsubdivided triangles
of the simplicial 2-spheres obtained by deriving one edge of σ4

2 repeatedly.
38hier auch paper boat
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cannot be done without a singularity because of the needed reversal of direction
in the common middle edge of the two paths.�

Likewise, using the hands-on method of van Kampen, this minimally non-
embeddable nature of any Pontryagin complex was shown by Schild in his nice
paper. Or, à la Flores, as we noted on p. 49 39, for any (m+2)-vertex yin-yang
complex K the m-pseudomanifold K ∗ K is in fact an antipodal m-sphere, so
there is no embedding of K in Rm−1, for it would give a Z/2-map K∗K → Sm−1

contradicting Borsuk-Ulam.�We’ll now elaborate on the ‘surgery’ which shows
the spherical nature of these pseudomanifolds.

− : − : −

Note this ‘surgery’ (σ, ∂θ)→ (∂σ, θ) looks like usual Milnor surgery, indeed
is the same if we interpret parentheses as products instead of joins. Let’s see the
difference by looking as well at the deleted product, the time t = 1/2 subspace
of the deleted join, as we strip the four triangles of ∂(σ3)∪{pt} one by one and
replace by complementary edges:- To start with this cell complex is a disjoint
union of three 2-spheres: one antipodal and two that switch under the Z/2-
action. The first ‘move’ puts two antipodal handles to make a single antipodal
sphere, then each move results in one by one attachment of three more pairs of
handles, so: the deleted product of the 5-vertex Kuratowski graph σ4

1 is a surface
of genus 6 equipped with a free Z2-action. Otoh join-surgery uses disjoint 4-cells
{σ · θ, θ · σ}, pasted atop extant 3-cells {σ · ∂θ, ∂θ · σ}, to replace them by the
3-cells {∂σ ·θ, θ ·∂σ}, on the other sides of the 2-spheres {∂σ ·∂θ, ∂θ ·∂σ}: which
does not modify the manifold.� 40

join vs product surgery

Likewise the deleted join K∗ of any K = ∂(σm) ∪ {pt} is obtained from the
deleted join of σm, the octahedral m-sphere, by replacing {σm, σm} by the cones
of their boundaries over {pt,pt}. Otoh its deleted product K# has three disjoint
(m−1)-spheres: the two copies of ∂(σm) whose vertices are the midpoints of the
edges of these two cones, they switch under the Z/2-action, and an antipodal

39Or even in a Reviewer’s Note of 1993: luckily I found these scribbles in pencil, for the
new AMS has distanced itself from the old wisdom that knowledge multiplies by sharing,
MathSciNet is now exclusively for duly institutionalized members!

40See one-dimensional (1991) pp. 87-88 for more on deleted products and joins of K1.
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cellular (m − 1)-sphere whose vertices are the remaining t = 1/2 midpoints of
edges. To keep the set of vertices same we disallow replacement of a maximal
vertex by its complement, so any first ‘move’ on K replaces an (m− 1)-simplex
of ∂(σm) by an edge from the opposite vertex to {pt}. This puts two antipodal
index 1 handles on K# which modify it to a single antipodal (m−1)-sphere, the
deleted product of the new y-y complex obtained after this move; and the same
game is on again …� Apparently in the three decades I’ve been away from this
part of our garden no one has paused to: work out what all these Z/2-manifolds
Y# can be, as Y runs over this nice family of all yin-yang simplicial complexes,
so we shall linger a bit more on them …

− : − : −

Indeed, K# is a manifold if K is any Pontryagin complex, i.e., join of y-y
complexes:- By join formula we know K∗ is a sphere, à fortiori a manifold, which
implies star of any vertex v×w ∈ K#, i.e., the barycentre of an edge v ·w ∈ K∗
with one end in K and the other in K, is an open cell of dimension one less: for
any simplex σ · θ ∈ K∗ incident to v · w cuts the t = 1/2 subspace of K∗ which
K# covers, in the cell σ× θ ∈ K∗ incident to v×w.� Our conjecture says these
are all: K# is a manifold iff K is Pontryagin.

Working out some aspects of these cute manifolds K# is a pleasant job, for
living as they are in spheres K∗ of a dimension more, they are orientable, etc.,
and the Z/2-homotopy type of K# is that of K∗ \K ∪K:- note this open set is
the disjoint union of open segments, one through each point of K#, now shrink
all these segments towards these midpoints.�

So, e.g., K# is a surface of genus 4 for the Kuratowski graph K = σ2
0 ·σ2

0 :- by
Alexander duality S3 \K ∪K has b1 = 8.� And, for any Kuratowski n-complex
we know at least the Betti numbers of the 2n-manifold K#:- e.g., those of σ6

2 are
b0 = 1, b1 = 0 and b2 = 20 because

(
7
1

)
−

(
7
2

)
+

(
7
3

)
= 21, so (σ6

2)# is a simply
connected 4-manifold with b2 = 40, etc.� Otoh, (RP 2

6 )# is the orientable 3-
manifold with π1 the Klein four group.� Since this is pleasantly addictive but
perhaps done better with a machine we’ll leave this job here …

− : − : −

Rebrowsing what Grothendieck circulated 41 in 1986 was sad, but reminded
me why he stopped at just RP 2

6 :- the thing is he was in psychoanalysis by now;
a christmas tree with stars of david and an icosahedral pendant models a web
of yin-yang pairs of psyche; but he stresses this list can vary, and is unsure of
the pseudomanifold constraint.

− : − : −

October 30, 2022. Due to a sudden health emergency on this day I have
to suspend mathematics for some time. Two weeks later things are looking
up but it will still be a long haul. There were some important thoughts from

41That is reference [5] of linear vs piecewise-linear; see also 3 1
2

, (50.41).
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my notebook that I was about to enter here. By and by I shall at least try
to put these down in this space. Also I’ll be working on a note or a blurb if
you will entitled Pontryagin Complexes which will set out for the convenience
of the interested reader that despite all his weaknesses and to put it mildly a
maddeningly different course the mathematician K S Sarkaria has changed the
look of mathematics as a whole. You’ll have to deal with it why he of all people
was able following an eye for simplicity and beauty able to change the noisy
market place – yes the clickety clack of ’results’ is a part of this scene and I
think I’ve had the pleasure of fitting in my share of puzzles too but this is only
part of mathematics –into something as a whole beautiful and very simple ...

− : − : −

December 25, 2022. Okay, so the blurb got done, remains to put here those
thoughts that I was about to put down on October 29 when I fainted etc. I’ll
content myself with just one and final concerning what I was reading from
Grothendieck’s 1986 writings that I’ve referred to before. Note he was not at all
old then, only 58, while I reading him was in my 77th year; he was done with
mathematics, my best mathematics came after my 64th year!

Anyway let me come to the item itself. What G calls an icosahedral structure
F on a set S of six vertices is a choice of (necessarily ten) triangles such that
each of the 15 edges is incident to precisely 2 of these triangles, that is it is same
as a RP 2

6 . But (leaving aside the context–psychoanalysis–which gave rise to it)
G’s focus is on counting how many of these icosahedral structures are there. In
fashion characteristic of all his writings he lays all this down as a long Théorème
1 containing parts (a) to (f) and then proves it equally at length. However no
competent mathematician should have any difficulty checking all the statements
without looking at the proofs.

Basically we are just looking at the action of the group of all bijections of the
six element set S on the set of all icosahedral structures on this same set. The
result is any two of these structures are isomorphic under some permutation
and there are in all twelve distinct icosahedral structures on S. These occur
in pairs: associate to each F the icosahedral structure F ′ given by taking the
complementary ten triangle. Denote by Σ the set of all biicosahedral structures
{F, F ′} on the six vertex set S. Thus our action gives an automorphism of the
group of all bijections of S with those of Σ.

Grothendieck doesn’t say it but this action is exotic that is to say (after any
identification of S and Σ) not an inner automorphism. On the other hand –
Segal (1948) is one simple exposition – the automorphisms of the group of all
permutatins of any set of cardinality other than six are all inner.This exotic-
ity is clear from noting the action of a transposition α on Σ: it can be seen
that it switches each biicosahedral structure with another one. This should be
clear from the figures below, where incidentally unlike Grothendieck I’ve pre-
ferred 42 the most unforgettable way of drawing an RP 2

6 , viz., draw the usual
42He prefers the usual face-centred view of an icosahedron’s half, the pentagram reflects a

vertex-centred view of the same; a similar planar edge-centred representation with the closed
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star of school, i.e. a pentagram, then derive the pentagon and identify five
pairs of opposite boundary edges. That α becomes a product of three disjoint
transpositions of Σ rules out an inner automorphism.�

What about all simplices with vertices in S? The 5-simplex is fixed under all
permutations. Deleting this we get S4

6 , the minimal trangulation of the 4-sphere.
An altogether deeper question with the word ‘exotic’ is an outstanding problem
of mathematics: does S4 have an exotic smooth structure? The majority opinion
is it has infinitely many though none has been found. Once mulling it over some
I thought: maybe S4 has precisely two smooth structures? It is a huge jump
but I’ve this quixotic feeling that Aut(S6)/Inn(S6) = Z2 is somehow pointing
towards this! With this thought to chew on I will now close this miscellany fully
knowing many gaps and errors in it need to be addressed ... -

.
star of edge in the interior of the polygon is not possible. However note all this is btw, we are
dealing with topologically accurate triangulations only.
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Does all shown in ζ paper VII hinge just on functional equation of that theta
2ψ+1? Will theta–hobson link make this some Poincaré duality of tilings? Link
ϑ–πi(S2) is a cartesian–or haha kardashian?–hint of link with RH.

On April 20th sank in Riemann multidimensional theta only, adjective Siegel
in Mumford-Umemura only screws chronology: solving biquadratics by four half
turns was by Jacobi’s time, by Riemann’s all was ready, except that relativistic
or automorphic lifting later by Poincaré, of meromorphic functions on surfaces of
any genus, which were known since Abel. So that new application of monodromy
left by Galois was Jordan’s to mop up in 1870, it is (sum of) angles zero case in
our hobson construction, so tilings modular not compact.

Maybe Riemann’s theta θ vanishing theorem of XI is for seed case all angles
0 only? Or maybe more because he counts in XXXI all abelian functions of that
genus as those on whose mod 2 homology class ϑ is nonzero? Such counting
starting with VI uses Dirichlet principle, so laplacian, was polished by Roch his
student, and pushed all the way to index formula by Atiyah; so no wonder he
could again give a modern count this way. Of number of complex structures,
relating them with spin cobordism. Maybe–using XI–one should say θ not
identically zero eqvt to ϑ not zero mod two. Translated into tilings, this counting
of ϑ should suffice for first result in this continuation.�

Since above floundering but re-reading Johnson et al on relation of Atiyah’s
invariant to Arf’s the nonsense in last para can perhaps now be weeded out and
that first result correctly stated and shown.43 Tantalisingly near is planarity
criterion of Pontryagin and Kuratowski, the van Kampen invariant, its possible
link to this of Arf-Atiyah, cf., Eccles Akhmetiev Melikhov, homotopy entrails of
R̂4, all built maybe by relativistic periodic motions, showing exactly two distinct
Lipschitz structures on 4-sphere?

− : − : −

Theta embeddings of tori in complex projective spaces are in Lefschetz, 1927
and TAMS, and Lang’s Abelian varietes has story from here to Weil conjectures.
Counting toral structures is in internal or pontryagin analysis of manifolds, as
well as relativistic building from motion only of all this matter. This all evoked
those real analytic lie algebra toral structures with arbitrarily slow spectral non-
degenerescence : we used infinite dimensionality of a non-final term, which is not
available after complexification, but it is likely there are complex toral examples
too : showing that beyond nice lattice tied presumably kähler structures even
tori admit lots of complex wildness. About that flamboyant purely cartesian
conjecture for the 4-sphere we made it implies that sliced knot computer search
started by Freedman and now joined by Manolescu is going to end up with zilch:
no exotic 4-sphere this way : but – as suggested by said cartesian broadly – the
fact that π4(S2) has two elements will give by motion matter identity a unique
non-relativistic or exotic structure on it.

− : − : −
43Should see this notebook and redraw first figure.
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Vandermonde’s determinant used by Belyi in second proof of his theorem
that any surface is made by a rational polynomial branched over three points
had evoked again connection with nice triangulations; at least for most genera
our argument had in fact fourth color non-singular; then one can complexify
to do over complex numbers; Weil’s descent made slick by Grothendieck – a
paper by Goldring – makes it over rationals, q.e.d? After Sjisling and Voight’s
“On calculating Belyi maps” now certain a nice triangulation with D trivalent
gives Belyi’s theorem, even via Andreev’s circle packing. To join beehive and
say Gal(Q/Q) with ‘esquisse please’, here’s a dessin d’enfant [diagram]: all
AB edges give one, for there is a prescribed cyclic order around each vertex,
conversely from this data can make nice triangulation.� Old annotations on a
2001 Garrett page show only descent was in doubt then, now Kock with field
automorphisms of C preserving branched complex covering helped, then nice
overview by two above took care of rest, but joining a hive is not nice, a new
one is: nice triangulations are nicer than wise crow’s dessins, so cartesian asks:
can they all be made as above over Q? [Sept 13, 2021]

− : − : −

From K a matrix, characteristic polynomial, Jordan canonical? Mused on
Allan’s musing about Heisenberg44 but could only think of resemblance between
join and R×Rn ×Rn with group operation (t1 + t2, x1 + x2, y1 + y2) except in
time also add half x1 · y2 − y1 · x2 for wee non-commutativity. Brodie’s thesis
recaps this group has up to unitary equivalence but one irreducible infinite
dimensional representation, this gives quantum mechanics, and besides only
one-dimensional representations that give classical mechanics. Possible close
connection with lexicographic order also didn’t give anything interesting, only
usual ordering of weights, and of partitions like Young’s. Thangavelu’s book
doing laplacian on it was there, and others, drier, on connection with theta
functions, Weil representation, etc., that is in Mumford’s Tata.

About the canonical chain homotopy of Weil maps : note Weil algebras and
that of polynomial coefficient forms very close, also that ιd + dιX = LX has rhs
zero on constant forms, that alone feature in S&E. In that paper a Lie algebra
was involved, so V had this structure, giving us the filtration of the thesis, from
this infinitesimal formula was perhaps made a 2-chain homotopy with term E2

of this spectral sequence being thus identified to Chern classes, the connection
definition that is? But for moment this aside too ignored.

Preprints keep to chronology better, and despite–or maybe because of–their
shortcomings are better too for someone else to get into the game. This apropos
some other scans put, e.g., the two pages added to my zeta paper with Björner,
but haven’t got time yet to look at Loday again for that Gysin link to cyclic
cohomology, nor read even induction argument.

− : − : −
44After reading S&E when I was in MIT to give some other talk in Stanley’s seminar.
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Elliptic ω, F = C−1(K) → C0(K) maps 1 = ∅ to v1 + · · · + vN , exterior
shifting, when is ←−K ∼=

←−←−
K? Square matrix after row permutation – pivoting,

full pivoting involves columns too – can be reduced by Gauss elimination to a
lower triangular L, the reducing process giving a U , so product of these two.
We are doing something like this with chain isomorphisms now. Vandermonde,
its square is discriminant – saw ANT made easy by Ash. Of course moment
curve, but which – closed, as in discrete Fourier transform ? – order is there, and
transcendental enough the discontinuous Galois symmetries. For equivariant set
the stage in the quotient DGA determined by the biggest octahedral sphere with
all conjugate pairs of vertices; one can again equivariantly stretch or squeeze axes
to get twisting diagonal algebra automorphism, and now there is a moment curve
and its conjugate, the order of the curve pair and conjugation type each basis
element in the sense of mli – still Sept 2 2021 not scanned should do – and with
genericity here we can expect type-shifted maybe.

− : − : −

... applies to all groups G, and just the finite groups of motions of the unit
circle of the plane should suffice for this theory of Chern Pontryagin classes. The
various join formulas etc are clear. Beyond these finite groups the group S1 itself
should be roped in ... again it was here Pontryagin’s work on π4(S2) pushed into
the next stem by his student Rokhlin, see last installment of this miscellany,
which gave that remarkable 2-dimensional example showing van Kampen’s iff
cohomology obstruction doesn’t work here–a natural homotopy theoretical nec-
essary condition’s sufficiency remains open. Should be maybe call K ‘negative’
rather than conjugate of K? We went for the latter–more precisely think of the
conjugation that is reflection in the 45 degree line, so making K real part and K
imaginary part, in a process of complexifying K to keep our set up close to the
Hodge diamond and the Kahler package, however now working in a neighbour-
hood of this complexified K in complexification CN of V , in this open context
Poincaré duality used by Adiprasito etc doesn’t work and things get different,
as seen before Stein manifolds etc come to the fore. However thinking of the
copy as its negative probably should be pursued as well, now we are restricting
to orientation preserving groups of the unit circle

− : − : −

On Steenrod’s 50th death anniversary posted einstein and new List showing
hyvuf dI nwbrwbrI ahead of this ink suk; tentative titles for the other two saral
parchas are XOrdW dw qrIkw and s`lIvn dw nqIjw.
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September 28, 2021, 9:12-9:15 a.m. I was totally surprised in 213 by our son,
daughter and granddaughter !!! Minni was in on Manpreet’s visit, but when she
went to the airport, Mallika and Azeeza had taken her too by complete surprise
there !! Together again after a long hiatus due to the virus, our days became
happily busy, for example, November 7, 2021 was historic : conquest of bucket
bridge by all five of us, Z leading, a piece of cake enfin ! Come December it was
time for Manpreet to go back, but by then our son-in-law Prabhjot was with
us, however by end January it was back to usual.

− : − : −

November 19, 2021 was great leader’s u-turn on “reforms” intended to hand
farming here too to oligarchs to “develop,” a policy so well-liked by Tweedledum
and Tweedledee in all “democracies,” that world media barely took notice of the
year and a half long protest, and more than a thousand deaths on the road, that
it had taken to bring about this temporary reversal.

− : − : −

On December 18, 2021 two men were lynched, one almost in the Darbar Sahib
itself, for alleged sacrilege during so dru rhrwis, by some alleged followers of the
sweet and gentle teachings of Guru Nanak. Despite abundant video evidence,
the police failed to identify the assailants: in fact no murder charges were filed!
The two victims also remain unidentified, but seemed to be poor and probably
mentally unhinged vagrants. Condemnation of the alleged sacrilege was loud,
incessant and popular, but of the two murders almost zero: no politician wanted
to risk his or her chances in the state elections.

− : − : −

Usually it is a couple of sitcom episodes, but with the children here, I saw
some movies too. It’s a Wonderful Life (1946) suggested by our daughter-in-law
Ravleen was nice, and Chal Mera Putt (2019) funny, but the others were jerkily
directed: even with subtitles on, I had to ask the kids often to stop and tell me
what happened! Inclusive of Don’t Look Up and Being the Ricardos (both 2021)
which were hot favourites for the 2022 Oscars.

The former has a Pentagon sized doomsday asteroid that the generals are
all set to blow up and save the world, but the oligarch owning not only Dash
Cellular but also POTUS wants to mine its precious metals first! He mimics the
soft-spoken nerd, once at the top, whose lumbering word processing program
comes built-in my laptop (and who owns the most farm land in the USA). For
this reason, despite being packed with Tweedledum stars, this movie did not get
as many from its newspapers. For the same reason, Tweedledee gave it a good
review, even though the muscular oligarch now at the top, and actually given a
free rein to mine space, seems more their kind of guy?

These tie-ups and rivalries between oligarchs, who imho now run almost all
countries, are x-factors in the twists and turns of the neverending Great Game,
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but the way things are going, the odds are an asteroid won’t be necessary, the
insatiable greed of some ‘dashboard’ will suffice.

− : − : −

Azeeza loves making and listening to stories, so had brought a lot of picture
books; besides Minni borrowed many more, and has still some we used to read
with Mallika and Manpreet back in Barrick Street! I loved Oscar’s Book even
more than Azeeza, especially her peals of laughter at how silly this grouch was,
who couldn’t stand people, yet was nothing without people to ignore! However,
she is too small for the original Alice’s Adventures in Wonderland and Through
the Looking Glass, which I’d started reading on the side, but finished after she
left. For how this inspired me to a discovery about the helicity of hair of right
handed humans–it is the opposite to that of the actress in the other film from
2021 above–and much more, see “Actually it was Red’s turn ...” which is all but
complete since March and I’ll post soon.

− : − : −

The logo of a coming event 45 is but “Grecian origami” of 213, 16A ! This
led to my asking if the 3n − 1 =

∑
j≥1

(
n
j

)
2j varying pieces of an n-cube minus

a rotating small central n-cube, obtained by cutting along its hyperplanes, can
be re-glued to make a third n-cube: the answer seems no for n ≥ 3, but is there
a nice grecian solution of xn + yn = zn for all n? 46

�

− : − : −

ijsu hiQ joru kir vyKY soie]
nwnk auqmu nIcu nw koie]33]

45Marred now by what I’ve often bemoaned, see e.g. (50.43) of 3 1
246A simple, but not so nice, grecian solution of any xn+yn = zn is also in the linked paper;

and a nice but lost–for a margin was too small!–proof of Fermat tells us no solution is possible
for n ≥ 3 if we insist all pieces be n-cubes of the same size.
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