
REVIEWS CI V) 

( ·1) Consider any subset $ of the power set :J.' (X) of a set X which is 
closed und er interections, unions, and complements. Equip $ with the 
addition A + B = CA \ B) u (B \ A) and mvl+1 f"'lic·otion A.B = All B. 
Sjnce A + A = A and A.A = A we Set? th.at $, is a ßuol<~·'·· ...i.lg .LI•&, i. e. an 
algebra over the field [F 2 of 2 ~lements in which all elements are 

idempotents. A theorem of Stonu [see p.168 of Kelley] assures us that 
al 1 Bool can al ecbra.~~ are isomorph i c to such aJ gebras :E s :J1 (X). 

A clos:ur•e algeb1··a is. a Boolean a]g(\bra equi,pped with an idempotent 
obeying Kuratowski's conditions with respect to the order defined by A ~ 
B iff A = A.B. A theorem of M~Kinsey-'l'ar·sld [Annals (45), 1944] assures 
us that any closure algebra is isomorphic to a Boolean algebra :l!, ~ ~(X) 
preserved by the c] osure operator· of a topol ogy on X. 

(2) „Th.:- J">--t.""'"" ,-.7,·.-·tn·p ,-,1t:,•hr·a t:t=-n-=-r-,~ft-f:} b).> ott ,_.fr:w •. r I hn.c;· 16 
elem€-nts„ ! This "theorem" occurs on page 180 of Bil··kho:f:f 's "Lattice 
Theory", and is attributed as being in Kuratowski's thesis [Fund. Hath. 
3 (1922), 182-231]. 

lt impliea that, in 
algebra :S(A) s :P(X) 

any topological space X, and for any As: X, 
over CF 

2 
obtained by applying the processes 

the 
of 

closure, complementation, and intersection, has at most 16 elements [the 
additional sets being obviously none other than 0 and X] and so is at 
most 4 - dimensional ! 

Now $(A) contaJns in particular A's b . .._..t,..&.1d .... „.y· bd(A) = cl(A) rl cl(A'), 
which does not in gener-al l i e in S(A). Regarding bd: :J> (X) ~ :J1 (X), 
whlch i·s not in gP.neT·al IT-

2
-linear-, an interest.ing fact is that ouü ha~ 

bdobd-.bd =- bd<>bd .alw~;- .... [see (13), p.56, of Kuratowski's "Topology"]. 
Thus the semigroup generated by bd has only two elements and one has 

(bd)t(A) = 0 iff this equatlon holds with t ~ 2. 

However <_"to<."t = o® [th.e rif!?zg·i.s:t&rlt!?d trad1t?nK1rJt;: 1-:,f ~oth C•:•ntt.u--.v math.ematics 
• ! ] certainly does not have the analogue b~ bd = 0 and bd bd is quite 

distinct from a„a even for a geometrlcal simplex: ir yields its boundary 
rather than 0. For tD. c CR one has bdo bd (<tl) = 0 whi 1 e bd (<fi) = IJ.~. 

t;. {0 1 i~1"U 
( 3) Unf'o1-.tunately the above "t.heor•em" t"r•om Bb·khof'f""S; book is f'alse ~ 

In fact in his thesis [op. cit. p.197] Kuratowskl gave an example of a 
8ut1s.·c~t A üf a 8f1c.u::c.• of cn·d·ilv.Alo!..- ]'-'r •„~hi<.:h :I;(A)_i.s· in.fLaLLLJ ·--! [I.ater on 
McKlnsey-Tarskl also made use of this same example !] lt is surprising 
that Bir-khoff, who gives these as bis sour-ces, made above mir:l.akc! ! 
[Even if one adds to the set of IR above given, which yielded 14 sets, 
the interval [4,5]~one sees .already that :I;(A) has at least 17 elements.] 

Kuratowski • s r-esul t was understood better- by Hammer· [ see Kuratowsk i 's 
book p.43 for- ref.] who sho~ed [in manner- indicated above] that if i i~ 

ar1 ord~·1· i"LVe~-8~>1€ int;·olution uf a .,_,c,.c;.·f?-t :J' anrl p is an or·dt<i·· pre.s·t~"r·vin.5 
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uttd ~-,„.1.u.uuNH~: -i<l<•mtuil,•ttl of :1.,, then thc.• .!:..:vut·i15r< ... H.lf' S s<-•HL•t·ut •:•d b),> i ülid 
p 

p has: at most 14 e:c-Zt-m.c.•n.t.s.·. [There are also two refs~ to a Cl-iap··~• vho 
apparently studled the serolgroup S(X) further.] 

(4) There 
operator o f] 

rnight be some homology, def ined 
the topology :r of X, such that 

in terrns of 
~0 (X) is the 

[the 
free 

closure 
abelian 

gr-oup generated by thP. comp•:>.u<.•k1t.s [as a{la.inr~t thepnt.h cumpo11.:- .d .. f..] of X, 
and "1hi.ch nced not obey the "hornotopy axiorn", but "1hich coincides on 
polyhedra with the usual hornology ? 

Slnce bd(A) = 0 iff A is open and closed, it secrns that bd still rnight 
be invol ved in the def in! tion of such fl bo111 ll ogy ? Also the homo] ogy of 
bd: ker(bd„bd) ~ ker~bd„bd) i. e. the hornology obtained by cutLing 
down 1·(X) to the mod 2 s~e ker(bd„bd), rnight be pertinent ? 

{ „ : ? h. ' }:" " f.C ' 

\ 

Another problern: can Hamme1-'s result be augmeril.ed by an interesLi11g 
characterizatiou of all [or say all or·der-preserving] idempotents p: 
5,(X) --; :J,(X), P"P = p, for which the semigrcn1p S is finite? Also, do 

p 
such questions tie up with some (?) known finiteness theorem re Boolean 

1 a]gebras o{ some (?) Cnh"•"t\, to whicl1 ßour<g.;:csin once alluded ? 

An11Ll1 Pf· 1n1t!t't"l~line. pi'ül> lern 111i· .ti1 bt Lt• xrl(1(· t1 1 P Kur-alo<1i=:k' " 
of a space [i.e. the definii.ion X ~-4 S(X)] from the categorical 
viewpoin1„ e.g . it seems thal. this sim>1 to110l0gJcaJ lnvar-1.ant provldes 
obf>tni c f ion ~: Lo embi:-ddabl lity of , t fn y·~ 

(5) lt il'l conven.ient to employ the ·iul •. u(f~ notation for any t„d„„ ... y 
01 ~1. .. • ~~? seL X, c.-:o e.g (.,x] will denote {y c. X: y ~; x}. [Some care is 
necessary however to distinguisb an interval (a,b) from th1! or·dc~r·ed pair 
(a,b), and also to distin~uish intervals in different sets: e.g. the 
interval (0,1) of ordinals is empty, but that of real numli r<, is 
someth.lne el!H! nen.in ] The oP<l~r· t„~pu! .07 of X is the one genr.r ·a l.l'd by 
all intervals o! the type (. ,x) or (y, .). 

]J, „_„,.f Let~ be a f<"n"ly or 1>pl:'t .„ •'{ [ x,y ] wl i covcr-~> it, and let 
c be th<J supr emurn of all z such thaL some finite suhfamily of ß covers 
[x,z]. Now choose a member U of ~ containing c, and a z in I slightly 
to the left of c such that [z,c] is in U. Add U t'o a finite subfam.ily 
coverine [x,z] to get anoLher finite subfamlly covering [x,c]. Un] ess c 
= y this finite subfamily will contradict the maximality of c. q .e.d. 

Nob: thal for tR, whlch ls an example of a totally ordered space, the 
above result implies the classical Heiau.~-Uoa,t..:l Th~or•em,„ i.e that a 
subset of real numbers ls cornpact !ff lt is closed and bounded. 

Recall also that the standard covers argument shows that any c:ontµac:t and 
Haus.'dorff X i.s- w;,~·-M.al, so, for any ordered set, all intervals of type 
[x,y] are normal. 

( 6) Example!.a iuvol-ving 01·,dhaals. 
ord.i na.l f1, and equipped 1,.1j th the 

Uh e>;Jve. r ~{<..< fH ~ ß 

l- q' G' M \, ~1 u C f ~ c d ( 

' S f vt <; ..,..... /1. ~' 1 

- -4- -

In the following all intervals are of 
order topology, with l.ö, resp. o~ being 

e-, h.tU3. ~k9.t IVVl. "~ ... t{.ot ( • >'O . 
r ~ , .., 1.<. ..;., (w&. ... t i ei &..t 
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the first infinite, resp. uncountable, 
other highlighted terms see Kelley.] 

~ [o J 
(i) No sequence in [0,0)jconverges to 

ordinal. [For the definitions of 

its boundary point n. 

(ii) Both [0,0) and [0,0) are normal but their product is not. 

(iii) Though the rectangle [0,0) x [0,6.'] i s normal, 
ls not. 

the ·subspace 
obtalne<l fr·om lt by deletlng lt.s c.or't1er- (O„'..!-') 

(iv) The Stone-Cech compactification of [0,0) coincides "1ith its 
one-point comp.ncti:fication "1hich of course is [0,0]. 

(v) The space [O,f."2)' 
compatible "1ith its 
c:;ompl.-_··tc- . 

is ui1i:f"o1„ndzable, and there is a unique uni:f"oi··ndty 
topology, and with respect to this it is not 

For more see pp. 29-30, 59-60, 76, 131-2, 163-5, 167, 172, 204 and 
Appendix of Kelley. 

( 7 ) Pr·ech.€?t.'& cunvo1•gence axio11-.s. 
of all pairs (S,x), where S: D _, X 

For a topological space X the set ~ 
is a net, x EX, and limdS(d) :o :x, 

ha~ the following propertles: 

Ci> If (S,x) is such that S(d) = x for all d, then (S,x) e 8. 
<U> If (S,x) E ~ and T is a subnet of S then (T ,x) ..;:. ~. 
<ili> (S,x) ~ ~ implies (T,x) ~ ~ for all subnets T of some subnet of S. 
Ov"> If S: D ~"". E -• X and T: D -„ E are such that (S(d,.),T(d)) °"" );=· for 
a 11 d , an d ( T , x ) -.:::. ~ f o r so m e x .P. "e , t h e n t her e i s a f u n c t i o n f : D ~ E 
such that (R,x) c ~ where R: D > Xis given by R(d) = S(d,f(d)). 

Kelley shnws that conversely a set ~ of pairs (S,x), "1ith S a net in X 
and x € X, which satisfies (1)-(iv), determines a uniquc topology on X 
such U.1at l im .S = x i ff (S,x) E r;·. 

[As a matLer of fact KelJey's (iv) is more complicated his iterated 
limit theoren1 involves a function S(d,e) "1ith d E D and e ,_:: Ed, a 

dlrected set df:.·pcmdi>ie; on d. Replacing each Ed by E = Ud Ed, and 

ext ending S to D x 
lim S(d,e), it scerns 

e 
good. ] 

To sr.-c this he deflner; 
for some net S in A. 
Kur·< 1 M.„~.k i 's condi t i on 
a unique topology such 

E by imagine new 
that our version, 

points,_, (d, e) to 
i. e. axi om ( i v), 

the limits 
is equ,lly 

p(A) tu cons1st of all x c X such_that (S,x) ~ ~ 
Thls self-map p of _:J• (X) is shown to sat.isfy 

[with pap = p follo"1ing from (iv)]. So there is 
that p(A) = cl(A), etc., etc. 

(8) Urysohn's tbeor·ern chn.ro;icLeri?.es second countab] e metric spaces. To 
see this note that Hausdorfness ls obvious and that lt is also true that 
a m.:-tr·i•:. sp•:i•: t· is nor·n1al : 

This follows by noting that, for any As; X, the function x 1--.,, d(x,A) = 
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~ 1 inf{d(x,y): y,,; A}, 
- d(y,A)I -:'. d(x,y) 

,~:J> consists of pojnts „ 

d l .?„:lanc~· from x t<::• A, j.!'l conl. .inuoun, because 1 d(x,A) 
by the triangl o inequality. , So closur-e of any A 
at zer-o distance from it, and tvo disjoint closed 

~ s ets can be contained in the tvo dis j oint open s ets cons ist ing o f al 1 
t_~points of the space nearer to one of thero in coroparison vith the other-. 

Tht!'- 'll·'1h.:..•·--J ,,..,,„ t "'h , ,,.. 1-:i un.iv~r-E-·n1 c:•,c..,-.,-,,,...1 ••. , .•• „.f.-.1.1.-, »!<?+~·-),-; spacp, in 
thü scn.r; c l.hat ri.vy S C( U1 H 1 countc.ble meLr·ic spor·1· 11.1„:.1 ~' ln lt. 

llC 

„ ~ Abi;L1·11<~L char-acterizations of non .s-~r.or1d countable metric spaces vere 
" I ~discover-ed lat er by S11d1•11uv, N. ..... 0 at.u, et al. 

( 9) lJ i th the product topo 1 ogy, the s:pac:e :P (CN) = 2[N of' aJl suhE•·~i .. is o:f· CN 

[and more general ly• iN vher-e X is any topological space] has the 
proper 1.y that any countable pover of this space is horoeomorphic to 
itself. 

lJe can thjnk of the eleroents f of:.l•(IN) as all sequences f!N ~ {0,1}. 
Associating to each f the cor-responding bi.na1--y decin1al ve get a 
C:(1rdi.n.u0Hs„· .s·urjc.•.:tir:>»t o f th i s spac e onto the uni t int erva l . Us ing above 
homeoroor·ph i ti J11, and a countabl e pr-oduct of thi s sur j ect i on, we get a 
continuous sur-jectfon of :P(CN) onto any countable pover of [O,i]. 

On the other hand i f we think of the el ement.s f o f 2[N as al 1 s equenc es 
f: !N _,. { 0, 2}, and assoc iat e to each f the corresponding tiE.•ntary 
dt-cünal, we gel an e-m.bt:ddi..n::;,.' of J'' ([J\;) in [0,1], the iroage being the well 
knowr1 Caa.~u. ~t:..!'l., which is obtained fr-om [0,1] by successively excluding 
the open roiddle third intervals. 

The afor-ementioned continuous sur-jection of :P(CN) onto any countable 
po"Wer of [0,1] can no\J be extended, by using the arc connectedness of 
the cube, to these excluded intervals, thus obtaining a Peatu.J cur•ve , 
1.e. a contlnuoua aurjectlon of (0,1] onto any countable po"Wer of [0,1). 

In fact [see pp.164 - 65 of Kelley] any co>nru~u:: t and at·-c (YffH'l~,-- f..=.,-/ nu...t>--i•:
.S.' iJJ.„-L L. a <:••ntlnHr••>,c• im12€e oj [ 0, 1] . 

\tllllTEIIEAD (jROUPS 

Ta "lk of 16.4.93 by J.'.'l't' .-.„.n [based on joint vork„vith ! FJ····--· ]: 

<1„ In 
defined, 

his faroous work on corobinatorial horootopy, 
for each group r, an abelian group lJh(r) by 

tJh(I") = lim r\GL (dT)/[GL (;;fl),GL (71 )]. 
n n n 

.. 

It. measures the stabl e ob::; i. 1· 111 LI on to r-educing a matrix over :zr to a 
diagonal one havjne +(gp.elts) only. 

<:tn The <J.J llebr-aical task of computing these groups was wel 1-begun by 
lJhitehead's student Hignl.Dln, and essentially by continuously developing 
Higman's ideas, much is knovn. For exarople, l:Ju!:.:s shoved that 1Jh(2 /Pl!.) = 



free ahcUan. gI'oup of rank (p - J)/2, 1.1hile Bass-l:olle~ -Sw&i1 showed that 
for any fI'ee abelian group it is zero, and later StalUngs showed it is 
zero for free groups. The conjecture 1.1hether tJh(f·) = 0 for all torsion 
free groups r still remains. Again, Bass showed that for r finite, 
l.Jh(f ' ) is finitely generated, but on the other hand Mu••l. „y has shown 
that, for many ordinary infini le groups. e.g. for r = 7..tP7'rIJ7' /IV, it is 
not finitely gencrated. 

(3) The follo1.1ine is tbe culmi1Hd i<'rr of 1.1ork of Sir '• , _,.., !l:i.;.;~..:, 
H.ül·d~ .... , M<1~.u···, Kii··by-S:lebc•ta111a.11u1 etc .. 

h- com„>RDIS1' THEORPM 
tlu:•i·.:.· is a bijD...:l iuu l.J " ; ·1 T.J. l_,,_.~ w. •-·· Ui€! s~t 
bo.<.;'f• :rt c11„.? tlK4 Vhit~h.~a.rl t!:-:r-.-·ur· l.Jh(„

1
?1) -:..•f -a~·-

11 of di•-.-.·~·nsi.on 5 or lu'-'• ._„ 
uf oll lt c..0(1u.-d1.. •• ·11i : ~, .... 

; ......... „_:._._~,1.ta1 &.:._.i b·r-u11.:·· '"{ M 

Here by " h-cobordi •JJll 1.1ith base 11 " is rneant a rnanifold-with boundary lJ 
1.1ith OlJ a dii:;joinl union of 11 and N [the "top of the cobcH'dii::m"l 1.1hich 
is a hornotopy cylinder [i.e. defo1111<dioii retracts to both top and 
bol.l.o!H] . 'T'liP, i1 '1•: '1l.J..:. Wh~n 1 1'1), <.."a'l IPd lhf tu.-~u•• of the h -cobcndi<, 

is zer·o ;rr th(! h-cobc•r·disrn is UH genuinE-> cyli11dPr M „; I . 

(4> 'JJ [Fan'eJJ and Jonc,c;]. lj i J. . '-' ... J 1. ' ' 

j 

' 
0 (n, 1 ). th~n l.Jh(r) = 0. 

This they prove georoetrically by showing that h-cobordisros having as 
base the following kind of manifold muAt be all trivial. 

A riernannian manifold Mn is called hypcrbollc if its sectional curvature 
is identically -1. lt is known that these are quotients of hyp.-:~slhi?u-1 
11.-&pil~t.! GI by a di!HTc'IEl nubetoup r· of O(n,1). One r.;rn use the Poi o.c. ........... 
n""„~ ·1 of n1 unit disk in euclidean. n-space 1.1ith ~eodcsiq. 
dia11H'l.e1 ·: . 01 ci1 ·cular· a1„cs cutl:ine bou•1li"Y JH'l;•l't>~llc:ularly. 

Eat:·l l er· l!si • ·~ anrl r.H 1 • 1 1 h;ul 111 (, ,, ( ' ,, ' 1 v./ i 1 l "" :t'l 

<R :- One in6'red i ent. 
1.1hich applier: to the 
bundle Sl1 over M. 

in the proof is a refinemenl. 
induced h-cobordisro having as 

of the 
base an 

next resul t 
appropriate 

} t{_ •• , · ... „ ····-'-'•"--••- ~.._,. ,_ ...... ,_:L M :..! ... _, ,_.,...,,.„ ..... :..._. o. l~' .... -~t ÜtLy 

h-caboY-di.s-m hat.dnsf! 11 as: ba.s·I? 1::ind havins· all 1.r·hcks uJ' .s:i-;;;.:c.• boundt:?d by c. 
is fr-i.uial. 

Here by "a track" of lJ one rneans the loop in M obtained 
the deformation of a point of U into the end M. 

by pro j ect ing 
.. 

Besldes this ref ineroent the trivial i ty of h -cnbni d i f1iu!1 on SM uses the 
hyperbolir. stntct1i1 ·;:. , and the gc~od·~!-.:ic in thesc bundlen, to 
"shl" l nk" tr-acks f a1' enoueh Lo appl y llii l h c „ 

A product for.mul a., for the torsion of the h-cobordism over S:M in terros 
of that over 11, no1.1 ~;l10w(. lha.1 the h -cobor·disros ov1:1· Mar i:.' u. J<:o tr·l.vl.rtl 

1~5 



Analoaous tools aive calculations for Uh(f') vhen r ls a discrete 
subgroup of any Lie aroup and some lnterestlna a•neral conjectures. 

'WlPS "A THEORY OF IMHEDDINO ••• " 

<A> PREFACE. The space X* of all lnjectlve mapplnas from z 2 to a spa.ce 

X, l.e. the space of all ordered palrs (x1 ,x2 ) of distinct points of a 

apace X, vill be equlpped wlth the fr.ee Involution (x
1

,x
2

) +--+ (x
2

.x
1

). 

Thls z
2
-space la important for embeddina theory because X embeds in Y 

only i:f' t.her-e is a con"t-inuous z 2-map X*---+ Y*. In fact note that each 

eabeddina f: X ___., Y induces an Involution preservina em.beddinig f* : ~ -+ 

Y*, viz. the one defined by f*(x1 ,x2 ) = (f(x1 ),f(x2 )), however the 

additional fact that the z 2 -map X* -+ Y* is one-one will be ianored. 

Ar:1y cont lm~ous Z 2 -map X* ---+ Y * pul ls back the equi var lant Smit.h class 
1 1 l 

o (Y*) e H (Y*) of the free z 2 -space Y* to the Salth class o (~) e 
l s 

H
8

(X*) of X*. So we have the embeddability crlterion: i:f' X embeds in YP 

and t.he lt.h Smlt.h class o:f' Y * is: zer-op t.hen t.hat. o:f' X* must. also be 
m m zer-o. For- examplep i:f' X embedsp in IR t.hen ö (X*) = 0. This last 

m follows from the fact that (IR )* has the z
2 

-homotopy type of the 

antipodal (m-1)-sphere. 

For a simpliclal complex K we will denote by ~ the cell complex 

consistlna of all a x e, vhere a and e are disjoint simplices of K, and 
equlp lt wlth the Involution a x e +---+ e x a. 

The equivariant cohomoloay class of K* whlch counts the isolated and 

separated double polnts of a general posltion plecewise linear map f of 
an n-complex Kin 2n-space, is in fact independent of f. The vanishina 
o f thi a obst.r-uct.ion class i s o bv i ous l y n ec easary f or the pi ec ew l s e 
1 inear embeddabi 1 i ty of an n-compl ex K in 2n-space. Ue wi 11 s ee that 
thls eabeddability criterion of Van Kampen is ittcluded in the above 
embeddability criterlon because t.hls obst.r-uct.ion t.o p.L embeddabillt.y 

2n o:f' an n-complex K in 2n-s:pace coincides wtt.h o ( 1 KI *). The key point 

in thls proof will be that K* is a z 2 -deformation retract o~ IKI*· 

Completing an araument aiven by Van Kampen, we vill show converaely that 
2n 

i:f' n ~ 3p and o (X*) = OP t.hen t.he n-polyhedr-on X embeds piecewis:e 

llnear-ly in 2n-space. Thls result shows in partlcular that plecewlse 
l lneac· n-mani f olds embed pi ecewis e 1 inearl y in 2n-spac e: a corol lary 
proved directly by Van Kampen. In fact the key additional ldea used by 
Uu and Shaplro to complete Van Kampen's araument was the one vhlch vas 
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used by Whit.ney to obtain the smooth analoaue of this corollary, viz. 
that a smooth n-mani f old embeds smoothl y in 2n-space. [ Far r eachina 
improvements of these constructions were given later by Haetllger.] 

lt will be shown that the mod 2 cohomolo~y operattons of any polyhedron 
X can be defined in terms of the mod 2 classes o (~ ) , in particular 

we'll see that an embeddability criterion of Thom is included in our 

cri terion by showina that it om (X*) ~= 0 mod 2, then t.he dual mod 2 

operations §.gi: Hr(X)-+ Hr+i(X) ot X vanish tor 2i+r ~ m. 

lt will be shown likewise that the mod 2 char-act.eristic classes of a.ny 
closed manifold X can be defined in teras of the mod 2 classes o(X*)' in 

particular we'll see that an embeddability c'riterion of St.letal and 
m 

Whitney ls included in the above criterion by showlna that it o (X*) = 0 

mod 2.J and X la an rrmanltold.J t.hen t.he dual mod 2 char-act.e ... 1at.lc 
classea sw. (X) ot X vanish In dimenslons l ~ m - n. 

-1 

Besides considerina the space X* of injectlve functions from 2
2 

to X, 

we'll also lntroduce some analoaous spaces of functions from Z or s1 to 
p 

X, and lndicate how their equivariant characteristlc classes should 
deteraine the remainina cohomoloay operations, resp. characteristic 
classes, of the polyhedron, resp. manifold X. 

Also we'll consider analoaous results concernina obstructions to 
iamersions and isotopies. 

<B> CHAPTER ONE. An obvious invariant of an embeddina Y c X is the 
homotopy type [or even the topoloaical type] of the complement. X \ Y. 

[As \Ju mentions in the preface, non-embeddability arauments based on 
compl ements have been ai ven by Hopt , Hant.zsche , Thom, and Pet.erson , w i th 
the latter two considering ring structure and cohoaology operations. For 

exaaple, by usina Alexander.Js duallt.y t.heo ... em, Hopf 

does not embed in ~n+l.] 
showed that IR f1' 

An eabeddina Y c X of polyhedra is called tame if (•X,Y) is homeomorphic 
to some pair (K,L) of simplicial complexes, and any such (K,L) is then 
called a [topoloaical] t.riangulat.lon of (X,Y). Note that, by additional 
subdivisions if need be, we can always assume that L is tull in K, i.e. 
ls such that any simplex of K 'Jhich has all lts proper f~ces in L is 
itself in L. 

Theorem ta. I f L is full in K, then ther-e is a de for-mation r-etraction 
of its complement K \ L onto [ K \ L l the lar-arest simplicial complex. 
contained in it. 

Pr-oof. The fullness auarantees that any point p of the topoloaical 
complement K, which is not in the slmpllcial complement, is an interior 
point of a unique llne segment. [x,y] all of whose interior points are of 
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this type, and which has x in L, and y in [~\L]. Compressing each [p,y] 
to [y] one gets the required deformation retraction. q.e.d. 

Likewise, for L full in K, there is a deformation retraction of the open 
[simplicial] nei~hbourhood K \ [K \ L] of L onto [K \ [K \ L]] = L. So 
its homotopy type is also an [albeit not very interesting !] topological 
invariant of (K,L). 

Ue will see below that the homotopy type of the deleted neighbo~hood K 
\ [K \ L] \ L [which of course is not the same as the homotopy type of 
[K \ [K \ L] \ L] = 0 1] is also a topoloaical invariant of (K,L). 

However for the proof it is convenient, and for a later result 
necessary, to work with a somewhat smaller neiahbourhood, which Uu 
defines by means of a "prelimlnary subdivislon" as follows. 

Consider the continuous surjection r: K ____,. [0,1] which maps L to 0, [K \ 
L] to 1, and which is linear on each of the seaments mentioned in the 
proof of Theorem 1. Ue define the closed tubuJ.ar. neighbo~hood of L in 

-1 -1 
K by Nt(L,K) = r [0,t], the tube of L in K by Tt(L,K) = r [t], and the 

-1 
t.ubul.ar- complement. of L in K by Et (L,K) = r [t,1], where t e (0,1). 

Since the combinatorial type of these Caeometric] cell complex.es.· is 
unaffected by the cholce t .e (0,1), we will f'requently just write 
N(L,K), T(L,K), and E(L,K). 

Obviously the homotopy types of N(L,K), T(L,K), and E(L,K) coincide, 
respectl vely, wi th those of the nelahbourhood, del eted neiahbourhood, 
and coapleaent of L in K. 

Theor-em tb. The homotopy type of the deleted nei,ghbour-hood, of a full 
subcomplex. L of a simplicial c::omplex. K, is a topolo,gical inuar-iant of 
the pair- ( K , L) • 

The followina ls an easy aenerallzation of the araument aiven in 
SeiCer-t.-Thl"eltall [pp. 125-128 of enalish translatlon] for the special 
case L = {v} [when the tube T(v, K) happens to be homeomorphlc to the 
link of the vertex v]. 

Pr-ooI Let (K',L') and (K,L) be any two 
trianaulatlons of the tame polyhedral pair (X,Y). 

tl ' • t2 • t2 ' ' t·3 ' 

full 

t ' 3 

[topological] 

in (0,1) such Chooae in auccession numbers t 1 , 

that the tubular neiahbourhoods Ni = Nt. (L,K) and Ni' -
1 

Nt. ,(L' ,K'), of 
1 

Y in X, are nested in each other as follows: 

N l 2 N l ' 2 N 2 2 N 2 ' 2 N 3 2 ·N 3 ' . 

Consider any point p of the boundlna tube 12 of ~ . As we linearly 

shrlnk N1 • to N
2

•, p traces a path pt endlna [after time t 1 • - t 2 •1 at a 
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point q of the boundina tube T
2

' of N
2
'. 

Llkewlse, as ve 1 inearl y expand N3 to N
2 

, any point q o f the boundina 

tube T2 ' of N2 • traces a path qt endina [after time t 2 - t 3 J at a point 

s of the boundlng tube T2 of N2 . 

A juxtaposltion pt.qt of two such paths is nested within Nt and N3 . Ue 

now linearly shrink this annulus to the boundina tube 12 of ~ . The 

resultant projections of such juxtapositions on T2 show that the 

identity map of T2 is homotopic to the map ~0 ~: T2 __. T2 , where ~: T2 __. 
• T

2
• is aiven by p 1---+ q, and ~: T2 ' __. T2 ls aiven by q 1---+ s. 

Llkewlse, usina the fact that 

nested wi thin Nt' and N3 ', i t 

ident i ty map o f T 2 ' . q.e.d. 

a juxtaposi tion ~ . Pt 

follows that 4'oY' is 

of such paths is 

homotopic to the 

The homotopy type.s: of the closur-e and boundar-y of the open simplicial 
neig-hbour-hood of a full subcomplex L of K [ i. e. of the closed star and 
1 i nk o f L in K ] ar-e not topolog-ical invar-iants o f ( K , L) : 

For exampl e, 
nelghbourhood 
nelghbourhood 
fourth vertex 

a 3-vert ex c ircl e K is the c losure o f the s impl ic ial 
of a closed edae L, while the boundary of this 

is the vertex not in L; and if we subdivide K by usina a 
outside L, both homotopy types chanae. 

But, for the smaller or tubular neiahbourhoods defined above, one does 
have the following pleasant fact. 

Theol'em t. I f L i.s: full in K. the-n the homotopy type o f the closur-e 
al,gebr-a g-ener-ated in K by L and intN(L,K) [the open tubular 
neiahbourhood of L in K] ·is a topolog-ical invar-iant of the pair- (K,L). 

This aeneralization ls proved by \Ju by maklna some straiahtforward 
modlf lcatlons in the arguments of Theorem 1b. 

[As \Ju mentions in the preface, non-embeddabilit~ arauments based on 
homotopy invariance of the pair (tubular neiahbourhood, tube) have been 
aiven by "Whi:tney, Pont.l'jagin, Thom, Massey and At.iyah, with the last two 
considerina ring structure and K-theory also.] 

Also i t is easy to aeneral ize all these Seifer-t-Thr-elfall type r-e.s:ults 
to any pair of cell complexes (K,L), with L "full" in K in the sense 
that a cell lyina in neither [K \ L] nor L should be the join of two 
faces, one ln [K \ L] and the other ln L. 

So we can use the followina to apply these results to the pth diagonal 

embedding ~= IKI __. IKIP of K, which associates to each point of K the 
corresponding con.stant map ( t, 2, . . , p} __. 1 K 1 . 
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Theorem 2. Let K~ denote the .sub cell compiex of KP. the p-fold pr-oduct 

of a simplicial complex. K, which consists of all cells of the type L = 
fJ 

1 
x - - - x fJ P ti.>ith (J' 

1 
n ... n (J' P = 0. Then the disjaint union of Ä ( K) 

and K~. to,gether- wi.th all joins h. (a )•L, wher-e L e K~ is such that al..kT _ e 
l 

K for- all i. is a cell subdiuision of KP. 

Ue lndlcate below an araument (see also c_(6)] whlch shows that lt ls in 
fact the jolns verslon of the above reault of Uu whlch la more natural. 

Proof. Tobe more preclse, Kp la the product 1 K x .. x PK of p disjolnt 

coples of K; so, uslna the notatlon je e JK for the Jth copy of e e K, 

each member of thls cell complex. is of the type 1a
1 

x ... x Pap, where 

the a
1

•s are nonempty.almpllcea of K. 

Ue wil 1 consider also the join ~ = 1 ~ • P K, a simplicial complex. 

each of whose members is of the type 1a
1 

u ... u 

union is also written 
1

a 1 • •Pap' or even a
1

• 

[thls disjolnt 

•a if no confusion 
p 

ia posslble] where now each a-
1 

ls any (posalbly empty] slmplex of K. 

The space is the dis Joint unlon of 

aeometrlcal simpl ices wi th vertices 
1 

{ ~' 
1jK1 denotes the jth copy of a point y e 

wlth the subspace of IKPI 
slmpllces. 

conslstina 

al 1 closed ( p-1 )-dimensional 

,P x } , where aaain J Y e 
p 

1 KI . Ue will identify 1 fl 

of the centroids of these 

The subcomplex of KP conslstina of all simplices 1a
1 

u ... u Pap with a-
1 

() ••• r"I ap = 0 will be denoted K:. Note that the intersection of 1 ~I 

with 1 Kpl equals 1 K~I, where K~ ls the aforementloned sub cell complex 

of KP conslstina of all cells 1
a

1 
x •.. x Pap with a-1 r"I ••• r"I ap = 0. 

is a unique way [take a = a-
1 

r"I n op ] of 

~ writina any simplex a
1

• •ap of Kp as the join ~f a [posslbly empty] 

Ue now note that there 

simplex a• 

simplex e 1 • 

•a havina all factors 

•BP, e 1 = a-1 \ a of K:. 

"same", and a [possibly empty] 

Ue assert that there is a simplicial subdivision ucf) 'of f which, 
restrlcted to each simplex a-1 • „. •ap, is the join of the face e

1
• 

•8 , with a. subdivislon of the complementa.ry face a• ... •CF, and whlch 
p 

is such that the closur-e of each .simplex. of the type a• . . • •CF ,gets 
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retrian,gulated as: the join l:i.(a)• (a)P • • 
The main point in the verification of the above assertion is that (~): 

ls a simpliclal sphere of the riaht dimension. 
uslng the mult.iplic:at.ive pl"'opel"'t.y, 

This follows at once by 

of thls construction, and the fact that the simplicial 
1 consists of all proper subsets of the cardlnality p set { v, 

c omp 1 ex { v}: 
p 

' V}• 

The lntersection wlth jKPI• of the aforementioned simpllcial subdivision 

IUCKP)I of IKPI• gives a cell complex \J(KP)„ which ls the r-equired cell 

\J(Kp) subdivision of Kp. q.e.d. 

So K~ is: a deformation retract of the of the s.•pace of all non cons:tant 

functicms { 1 , , p } --+ 1 K 1 • 

[Shapil"'o's direct proof of this corollary was erroneous. Also note that 
f or p ;:= 3, t.he pt.h pl'oduc:t. contigUl'at.ion space of K, i. e. the subspace 

of 1 KI P consistina of all one-one function.s: {1, ,p} ~ 1 KI, does not 

have the same homotopy type as the sub cell complex of KP determined by 
the condition that the factors a

1 
of the cells a

1 
x ... x qp be pairwis:e 

disjoint. For example, if K is a closed 1-simplex and p == 3, then there 
is no such cell, but certainly IKI has 3-tuples of distinct points.] 

The symmet.l'ic gl'OUp of all permutations fl of { 1' • p} • and so in 
particular the cycllc s:ubgl'oup z aenerated by the rotation n = (p, 1 ' 

1 KIP 
p 

2 • p-1), acta on by ('l . ,X ) 1---+ (~ ( 1) • X ) . p 'n(p) 

Likewise there are group actlons on 
p 

K*, etc. It is important to observe 

that the aforementioned deformation retr-action comm.utes with these ,group 

actions: . 

From now on, for the sake of simplicity, \Ju conflnes himself to the case 
when p is pl"'ime: so this cyclic action is tl'ee in the complement of the 

diaaonal, and the quotlent of the above 'Wu t.l'iangulat.ion of KP aives an 

equally nice trianaulation of KP/z . 
p 

Having checked that all homotopy invariants of the complement, tube, 

etc., of a diaaonal embeddina K ~ KP, are p .1. [ even topoloaical] 
invar lants of K, the chapt er ende wi th the f ol lowina r esul t o f Lee 
concernlng enumeratiue invariants for the case p = 2. 

Theol'em 3. Let V 
2 

be the .s:ub.s:pace o f all s:equences: c i j , k e IR hauin€ the 
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property that 

i.s inuariant under- .subdiuü:ion for- all. .simplicial complex.e.s K. Then V 
2 

i.s 3- dimen.sional and ha.s an inte,gral ba.s:i.s which. applied to any K. 
2 2 

yields the Euler char-acter-istic.s of K • K and K*. 

Proof. Since lt seems more natural ve'll in fact first establish that 
there is a joins version of the above basis. 

Under the set theoretic sur jection U(K2 ) ---.. ~, def lned by a.•ß•y 1-+ ( (a-
= a.uß, 8 = a.uy)), the pre-imaae of any (a- ,8) vith la-1 =.i. 181 =i and 

lar""61=k, consists of precisely 2
9

• Ls) siaplices · of cardlnality i+j-k+s, 

for each 0 s s s k. 

Thls follovs because thls pre-lmaae consists preclsely of all simpllces 
a.•ß•y = (a•(a-\a.)•(8\a))•(0•)..•µ), vhere a = ar6, andA. andµ are any t"'o 
disjoint faces of a., and so the required number coincides with the 

- 2 number of cardlnal l ty s s lmpl ices A. • µ o f (a )*, a k-f old Join o f 2 

polnts. 

So the number of cardinality t simplices in U(K2), and lts subcomplexes 
2 

A(K) and K*, is aiven by 

ft(U(K2)) = I:i+j-k+s=t 2s.(:J.tij,k(K), 

2 
ft(A(K)) = ftt,t(K), and ft(K*) = Ei+j=t f ij,O(K), 

reapectively, where fij,k = 1 ((a-,8): a-eK. 8eK la-1 =.i. IBI =j 

lar""61=k}I. The second and third formulae follow from the first because 

a cardinality t simplex of ucK2) is of the type ()l•0•0 lff i=j=k=t, and 
s=O, and lt is of the type 0•ß•y lff k=s=O and i+j=t 

Since the Euler characteristic of ~ coincides vitfr' the alternatlna 

of the face numbers of its subdivision ucK2), it follows that 
intearal element of v2 aiven by 

clj,k = I:a (-1)i+j-k+s.2s.{:J. 

sum 

the 

calculates x ( ~) , i . e . x ( ~) = J: c 1 j , k. f 1 j , k ( K) f or 

lntearal element aiven by cil,i = c-1>1 and = 0 

any K. Likewise the 

otherwise, calculates 
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x(K), and the intearal element aiven by cij,O = J: (-l)l+j and = o 
2 otherwise, calculates x(K*). lt ls obvious that these three elements of 

v
2 

are llnearly Independent, so dlm(V
2

) ~ 3. 

Ue only sketch Lee' s method for checklna dim(V2 ) :S; 3, because i t is 

(probably unnecessarily ?] laborious: 

He assumes lnductively that lt is true that the truncations of the above 
elements, determined by l,j < n, do span the space v2,n-1 of truncations 

,:t
0

_ 1 of ele11ents x e v 2 . Next he applies any x e v2 to all dearee n 

complexea of the type K = c:JU8, and also to subdivisions obtained from 
them by derivina one edae. The above inductlve hypotheais, plus the 
invariance under subdivision of x. is then ~sed to grind out the 
lnductlve step. 

To pass to the products version 

K2 correspond to simplices of 

of this basis simply note that cells of 
2 K havina both factors nonempty, and 

havina dimension one more than the cells, so - .:.rCK
2

) = ;t:(~) - 2.;t:(K) and 
2 2 

-x(K*) = xCK*) - 2 . ;:t(K). q.e.d. 

[ For p = 1, Mayer- had previously conaidered the analoaoua space of 
l lnear combinatorial invariante, and shown that i t is one-dimensional 
and spanned by the Euler characteristic: the above method of Lee does 
aive a very simple proof of nayer's theorem, but obviously ouaht to be 
simplified further to consider the cases p 2 3.] 

Another nice intearal 

characteriatic of the 

element 
2 tube K 
0 

of v2 is that which calculates the Euler 

= T(U(~),A(K)) [which coincides vith its 

products version K2 = 
0 

T(U(K 2 ),A(K))]. This can be easily calculated by 

noting that each cell of this 

di11ension more, of U(~). vhich 

-xcK!) = xC~) - xCK!) - xCK). 

tube 

is 

corresponds 

neither in ~ 
to a simplex, of one 

nor in A (K). Thus 

CC> CHAPTER T'WO. Given an action of a aroup G on a simplicial complex 
E, there is the induced action of its aroup rina· 'Z G on its cochain 

* complex (C (E),6), and so each p e ZG aives rise to the canonical short 
exact sequence of cochain complexes, 

* 
p 

0 ---+ ker(p) ---+ C (E) im(p.) ---+ 0, 

and thus an associated long exact cohomology sequence. 

Theo!"em 4. If E is any G-complex, and t e G is: any sgr-oup element of 
finite or-der p which acts freely on E, then 
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p-1 
im(l - t) = ker(l + t + ... + t ) and 

p-1 lm(l + t + ... + t ) = ker(l - t), 

in each C 
1 

( E ), i ~ 0. 

Pr-oof. The inclusions s are obvloua. For the reverse inclusions 2 we 
will use the fact that the orblt of each nonempty simplex under t has p 

distinct members. Thus, if we choose an orderina (o-, to-, 
each such orbit, then there exiats one and only one cochain 
specif ied lenath p sequences of ualues on these orbits. 

p-1 
,t o-) of 
hav ina any 

A cochain c 
valuea (c

0
, 

lies in ker(l + t + 
c 1 , , cp-l) have 

+ .f-l) iff the sequencea of its 
sum zero. For each such zero sum 

aequence lt ls poasible to choose 
• 

[startina with any initial term c0) a 

[unique) ~equence (c0,ci, 

the cyclically precedina 

aatisfies (1 - t)(c') = c. 

,c' 
1

) such that each c: is c
1
. more than p- 1 

ci-l. Clearly the correspondina cochain c' 

On the other hand c lies in ker(l - t) iff the sequences of its values 
( c 0 , c 1 , , cp-l) are constant. For each such constant s equence 

choose any sequence ( c 0, ci, , c~-l) which sums to this constant 

value. Clearly the correspondina cochain c' satisfies (1 + t + + 
p-1 

t ) ( c •) = c. q.e.d. 

Thus, if t acta freely on E, the cohomoloay sequences associated to the 

pair (d = 1 - t, s = 1 + t + + iP- 1
)E ZG are inter-related, viz. 

thes e Rich.ar-daon-Sndt.h 11equencea run 

... ........ H!(E) ........ Hi(E) ........ Hi(E) ........ Hl+l(E) ........ . .. s d 

H1 (E) H1 (E) i Hi+l(E) __., ........... ........ ........ Hd(E) __., s s 

where i ~ 0, and Hk(E), k and Hk(E) denote the kth cohomoloales Hd(E), s 

* * * c (E), Cd(E) = ker(d) and C (E) = ker(s), respectively. 
s 

Equtvariant Kronecker duality. The t's of cochains and chains are dual 
to each other, so the same is true for the s's and d's. Ue define, for 
any cochaln-chain pair x,y which is killed by the d's, resp. s's, 

resp. 

<x,y>d = <s(a),c> = <a,s(c)>, 

<x,y> = <d(a),c> = <a,d(c)>, s 

.. 

of 

where a,c is any cochain-chain pair such that s(a) = x and s (c) = y, 



c wc(~ l"G J l~/t--.·~ °' 
Llvuw.u~ W\ ~Ov{ '<\ ~ }.:UMUui <._x ,'1':> '( eu,.~'YI· c i'<..Q\ t_ ~.~ X 5 ~ '{ s]. 

~ -U:) L-1,.) v~ ~ ..S~ ~ÖX.J J'>J,. - t(>- ) --;J~ >:J ~ <:'dx_, <:f~ ;;- (5._,1 'J.'f 
- -~, 1 y > ...,,.~~·, ...... t..> ..I'-!...' .„ ....... "'...........___ ~ - ----"'- °Ad-----.:::r-----, _ _ ___.. ----S-

follow at once from the ordinary Stokes formula <ox,y> = <x,Dy>. 

Using these, TJu establishes that, 
perfect dua.lity, between the above 
analogous homological RS sequences. 

over fiold coefficients, there is a 
cohomological RS sequences, and the 

Smit.h classes oC t • These are the classes o 2k(E) e H!k(E), o 2k+l (E) e 
2k+l H (E), where the zeroth class is ~epresented by the cocycle which is 
s 

1 on each vertex, and the other classes are obtained successively from 

i t, by alt ernat ely appl y ing the connect ing homomorphisms it ( E) -+ 
i+l . . 1 .... 

H (E), [sc] 1-+ [6c.], and H
1

(E) -+ Hi+ (E) Ldc] 1-+ [6c] of the above 
s s d 

RS sequences. 

Topological invariance. TJu states without proof that the RS sequen.ces 
depend only on the equivariant homotopy type of (X,t), X= IKI, and that 
in fact they identify with their sincular versions which can be defined 
analogously whenever t is a. free sel f-homeomorphism of order p of a 
topolosical space X. 

Examples. These are powers of ~m minus the diagonal with cyclic action, 
so with quotients projective or lens spaces; and finite groups acting on 
spheres; and the a.nt ipodal invol ut ion in a. taneent spher e bundl e of a 
manifold. 

<D> CHAPTER THREE. (Tobe continued.) 

(1) Amongst the 
topolOGY are those 
to Peano curves)p 
and 1 eadine to 
dimensionality and 

Comments 

many interesting embeddin,g techniques of ,general 
aiven by Cant.or [using n - ary expansions, and lcading 
by Urysohn [using St.one-Cech families of functions, 
metrization], by Menger-Noebeling [using finite 
Baire cat.egory t.heorem for metric spaces], etc. 

( 2 ) Pont.r jaginps original deCini t.ion oC charact.erist.ic classes Cor 
maniColds was just. like Van Kampenps deCinit.ion oC "charact.erist.ic 
classes" Cor polyhedra: these wi:ire cohomology classes dual to some 
cycles residing on any general position self-lntersection of the 
manifold in a. suitable euclidean space. Thus, just like Van Kampen's 
embeddability criterion for polyhedra, the Pontrjagin or Stiefel-TJhitney 
embeddability criteria for manifolds followed immedia.tely from this 
original extrinsic deCinition of characteristic classes. 

The progression of ideas "tubular neighbourhoods, normal bundles, 
tangent bundl es, bundl es " then 1 ed to an int.rinsic deCinit.ion o f 
characteristic classes of manifolds. Analo~ously, for polyhf;dra, Va.n 
Ka.mpen's definition was made intrinsic by TJu by using X* etc. 
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(3) tJu's tubular neiai;hbourhood of a full subcomplex of a simpllcial 
complex [thouah itself not a simplicial complex] _is small and thus 
apparently more convenient for enumerative purposes than tho oriai;inal 
[simplicial] one of Whit.ehead, in 'vlhich the "prelimina.ry subdivision" 
conslsts in going 'vlithout any ado to the second derived. 

However i t does seem to be more natural to adhere 
practice in p. l. topology of confining attention to 
ptecewise linear- t.r-1.angulat.tons ( K , L) o f (X , Y ) , i . e . 
p.l. homeomorphlc to the polyhedral pair (X,Y): 

to the standard 
only [full and] 
those which are 

The "tJhltehead variant" of Selfert-Threlfall's [original] result is that 
t.he p.L t.ype oC t.he link oC a ver-t.ex v ts a p.L tnvar-tant. oC ( K, v) , 
and, more generally, the variant of Theorem 1 is that the p.l. type of 
the closure algebra generated by Land its open ·tubular neighbourhood in 
K is a p.l. invariant of the full pair (K,L). Ho'vlever note, as against 
the p.1. type of the tubular complement E(L,K), it is still only the 
homotopy type of [L \ K] which is a p.l. invariant. 

For more on p .1. topology see Whit.ehead, Zeeman, St.allings , lludson , 
Rotll"ke-Sanderson, etc. For instance, for the case when X is a [p.l.] 
manifold, lt is known that the tubular neighbourhood and tubular 
complement of any subpolyhedron are always manifolds-with-boundary which 
have the tube as their common bounding manifold. 

(4) The above review shows that Van Kampen Theory needs only [roostly 
finite] simplicial complexes, and some concomitant special kinds of 
geometric cell complexes [which are still "simplicial", b1Jt in the 
cate,:-or-ical sense] . 

However, as in LeCschet.z's "Algebraic Topology", 1942 (AMS Colloq. Pub., 
v.27), the "complexes" used in tJu's book are the following very general 
ones which had been introduced by Tucker-: 

A poset P, equipped wi th a dimension function P --.. lN, and an incidence 
function P x P--.. {1,0,-1} supported on its covering relation C c P x P, 
such that dim(a) = dim(8) + 1 V (a ,8) E C and ~ [a :4'] [4' :8] ": 0 V (a ,8) 

E P x P, is called an abst.ract. cell complex. 

~ For more on such early generalizations of simplicial complex aee 
St.eenr-od's "Reviews". These [somewhat ad hoc] defiqitions have now lost 
their original purpose because, by interpreting lt categorically, 
Eilenber-g, kan et al. have shown that the domain of val idi ty of the 
[more natural and elegant] slmpllclal method ls very large. 

( 5) Flner- "'11 subdtvtslons. 

confi,:-ur-ation s:pace o f X = 1 K 1 
consistina of all simplices a 1 • 

The homotopy type of t'he rth 

coincides with the subcomplex of 
•a with a.'s pair'vlise disjoint. 

p l. 

This can be seen by using a further subdivision \i(Kp) of the subdivision 

U(Kp) of Kp which was suggested to us by Bier [p.46 of 13.2.92-24.5.92). 
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Recall that TJ(Kp) consisted [of joins] of all sequencea ~ e 
":" CJl ' 1 ' 

,e ), with e u e. E K, and n 1<.< e. = 0 
p ot i _i_p i 

On the other hand V(Kp) consists [of joins] of all "sequences" {G : 0 ~ 
a 

ot s {1, ,p}}, with u Ce e K whenever C is totally ordered by s ae a 
and ea disjoint from eß whenever a and ß are incomparable under ~ [A 

proof that V( Kp) is indeed a subdi v ision of Kp is sketched in ( 6) 
below. This proof will show also that T.Ju's and Bier's subdivisions are 
but two of a whole class of ni~e subdivisions.] 

Note that any permutation n of {1, ,p} maps each nonempty set a to a 
nonempty set n(a), so there is a corresponding simplicial isomorphism n 

o f V (Kp) , and t.he :f'txed potnt.s o:f' any n : · W ( 'f!!' ) --+ V ( ~ ) :f'orm n 
subcomple~, viz. the subcomplex determined by the condition that e - 0 

ot 

whenever a is not fixed under n. 

Thus the quotient of V(KP), by any subgroup Gof such permutations, will 

be a simplicial triangulation of Xp/G. 

( 6) The mult.tpllcat.tve proper-t.y seems: t.o be haste in Van Kampen Theol"y 
because, firstly, the join.s: uer-.s:ions of all its basic constructions, K 
1-+ F(K), seem to obey this property: 

Secondly, r-eco,gnition of multiplicatiuity .s:implifie.s: pr-oof.s: dr-a.s:tically: 

For example, to verify that Bier's simplicial complex 'W(Kp) is indeed a 

subdivision of KP, the main thing to note is that F(K) = tP or V(i>) are 
both multiplicative. Note further that K S L, the iterated join of the 
vertices of K, and that E-'(K) ~ F(~). This reduces the verification to 

the case K = {v}, in which case lt is easily checked that '11 (~) is the 

derived complex of KP, the closed simplex on the vertices {1v, ,Pv}. 

[The above proof shows that any subdivision of (v}p will lead to a T.Ju 
type subdivision, e.g. just deriving the top simplex of this corresponds 
to the original tJu triangulation of Theorem 2.] .. · 

Thirdly, and most importantly, "1e will see that this multlpllcativity 
gives pr-oduct for-mulae for Van Kampen classes, "1hich imply [ for the case 
of manifolds, via Thom complexes: of their tangent bundles] the Whitney 
addition formulae, multiplicatiue .s:equences, and other stich things, of 
the theory of characteristic classes of manifolds. 

( 7 ) The multiplicatiue pr-oper-ty also seems to dr-astically simplify 
Lee•s pr-oof that dim(V2 ) ~ 3. For this the key point ia to observe th~t 

any chal'act.ertst.tc x e v2 satisfies 
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and thus is determined by its value on a vertex {v}. But thia can bia 
subdivided no further, and {1,2} has 3 nonempty sets, so the value of v2 
on {v} is a 3-dimensional vector space. 

Regarding the fr-ee Z-module cons·istinsg- of the inte€r-al elements of V 
2

, 

it seems that lt is generated [not by the integral bases of v2 given in 

Theorem 3 but] by the basis which Gomputes the Euler characteristics of 
2 2 

A(K), K , and K* . 
0 

Cha.J"act.el'ist.ic space V Col' p 2 3. 
p 

Bier''s subdivision \II(~) suggests . 
that a resonable definition would be to to consider all "sequences" 5.. 
of real .numbers, indexed 
nonempty subsets a of {1, 

by integral funct i ons A. 
,p}, such that 

,CY ) 
p 

on the set 

is invariant under subdivision, for all simplicial complexes K. 

of all 

Once a&iain the multiplicativity of the elements of VP should quickly 

establish the obvious auess dim(VP) = zP - 1, and probably one can evon 

display some integral basis of V coming from the Euler characteristics p 
o f some minimal Invariant subs ets of \II ('ff ) , 
lnteresting connections with results of Brown and 
Euler characteristics of groups and the poset 
symmetrlc group on p letters ? 

and there might bc 
Quillen concerning the 
of subgroups of the 

(8) Remarks re Smlt.h t.heol'y ot Cl'ee complexes [~ Uu's Chapter 2). 

(i) The easiest and best way of presenting this theory would bc to 
f irst work out the case of the unJvel's:al complex E = Z •Z • . . . of the 

p p 
group Z = <t>, and then restrict to any free Z -subcomplex E c E. 

p p 

k 
E.g. Hd(E), the group cohomology of Z , is easily seen to be Z in p „. 
dimension zero, Z in all odd dimensions, and zero otherwise [see e.e. 

p 
Bl'own, p.35]. Using the contractibillty of F. this computes Hk(E) also. 

s 

'• 
[The RS sequences are thus closely related to _the 2-step periodicity of 
the cohomology of finite cyclic groups. For a general G there may be no 
such apparatus for computing the G-characteristic classes.] 

(ii) Maybe 1 - t 

tnvolutton p ~ p 

+-1' 1 

[?] 

+ t + 

defined 

+ .f-1 
throuahout 
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atartlns wlth 1, of] the group ring of the [finite] group G, 

the property that im(p) = ker(p) and im(p) = ker(p) in Ci(E), 
[E = G•G• ... and thus for] all free G-complexes E. 

and having 
' > .l -- 0, for 

At least the norm s is defined for all finite G's, so Tat.e's cohomology 
theory, which uses s, might be generalising some Smith theory to all G ? 

(iii) If t is replaced by its conjugat.e ta in Z Li.e. a is re]atively 
p 

* * prime to the order p of t] then s is unchanged. So H ( E) 
s and Hd ( E), 

which are the cohomologles oi ker(s) and im(s), and also the ontire 
second RS sequence, remain thG same. However d = 1 - t gets mu]tiplied 

()t-1 (lt 
by 1 + t + •.. + t ,to become 1 - t , so th~ morphism of the first RS 
sequence induced by d, as well as its connecting morphism, alter 
accordingly. 

(iv) Smith classes of a Z -complex are of order p. 
p 

Also, it seems that the reductions mod p, in the 
followed by the Bockstein of the d or s cohomology, 
connecting homomorphisms of the RS sequences ? 

s or d cohomo 1 ogy, 
coincides with the 

The connecting homomorphisms of RS sequences also coincide "1ith cup 

product with the class o 1 (E). 

These m:lscellaneous t'"act.s from \Ju's Ch.2 should become clear .if view'ld 
from the point of view of (i) as facets of the aroup cohomoloay of 7 • 

p 

(~) Some r-emarks are in order re the quot.ient. E/t, especially since 
\Ju spends a whole lot of time in brlngins Smith theor-y down to lt. 

(a) Even if Eisa free simplicial complex, this quotient is an 
abstract complex only. llowever the quotient E"/t of the second derived 
of such an E is a simplicial complex. 

* (b) For any p, there is a cochain complex C (E/t;p(Z)), where p(Z) is 
the subgroup of the p-fold sum 2 $ ... $ Z dcflned by p(.) ~ 0, whose b 

* and 'w'hose isomorphism 'w'ith C (E;Z) both depend on a choice of orbital • p 
r-epr-esentatives. •·" 

(c) Ho'w'ever, for the case p = d = 1 - t, the projection map rr: E ~ E/t 

* * induces a natural isomorphism C (E/t;Z) ~ Cd(E). Even for the case p ~ = 

* * s, tJu gi ves a natural hamomar-phis:m H ( E ;Z) ~ H ( E/t ;Z ) . 
s p 

* (d) There are Smith morphisms defined in H (E) [involving reduction mod 
p if their lenath is odd] 'w'hich are tied to the Sndt.h mor•phlsms 
[alternating compositions of connectin~ morphlsms of RS aequences] of ~ 
by above maps. 
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ROTA 

From "On the combinator i es of the Euler charact er ist i c e" [ " Ch. 4 o f 
"Finite Operator Calculus"]: 

t. There ls one and only one measure on t.he pos:et. ot simpllclal 
complexes t.aklng any glven values on t.he closed slmpllces. 

Here, by measure, on the peset P of all [nonempty] simplicial complexes 
with vertices in a given set, is meant a map 2t from P into some l:'ing, 
which obeys 

x(K u L) = :it(K) + x(L) - H(K n L) V K,L E P. 

From the point of vlew of generalizing to posets other than P, note that 
closed sim:plices S al:'e characterized order-theoretically by the property 
that S = A u B impl i es A = S or B = S. So e. g. the .sm.allest mem.bE.-r 1 o f 
P, viz. the simplicial complex containing just the empty simplex, is an 
example of a closed simplex. 

Proo~ Thls follows by usins 

:it(AUBUCU ... UKUL) = 2t(A) + :it(B) + :it(C) 
:it ( AnB ) - :it ( AnC ) 

+ •.. + :it(K) + H(L) 
at(KnL) 

+ H(AnBnC) + ••• 

± H: (AnBnCri ... riKriL). q.e.d. 

For exampl e the reduced Euler characteristic X ia 
value on 1 is 1, and on all other closed simplices 
usual Euler characteristic ls the measure which has 
the value 1 on all other closed slmplices. 

the measure vhose 
is zero, vhilc the 
v al ue 0 on 1 , and 

2. lt S ls any closed slmplex, and µ ls: t.he Mohlus tunet.Ion o'C t.he 
pos:et. ot slmpllclal complexes, t.hen 

µ(1,S) = (- 1)1 5 1. 
So the values of the Hobius function on its closed simplices determines 
the reduced Euler characteristic of any slmpllcial complex by 

•·' X(K) = E µ(1,S). 
Ss:K 

Proof. For this recal l that the Mobius function µ: P x P --. Z o f the 
peset P is zero outside s, 1 on = and is def ined els e\lffiere so as to 
satisfy E µ(x,y) = 0. q.e.d. 

~zsy 

Next one has the following generalization of the above, which shows that 

the correct order-theoretical Interpretation of (- 1) 15
1 ('!Omes from tha 

reduced Euler characteristic of the poset of proper faces of S: 
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For- sny K e P one has µ (1 , K ) = - X ( K_ ~ where X ( K ) is: t.he reduced l~uler 

charact.ertst.tc [of the simplicial complex of chains] ot t.he s:ubposet. K 

= { L € P : t ;it L c K }. 

Its proof requires more work, but once obtained paves the 1,1ay f:or 
generalizations to other posets. 

S. Ot.her pos:et.s:. Being purely order-theoretical now, the above results 
have lnterestlng echoes ln qulte different P's: 

(a) If P is the poset of natural numbers under divisibility, then the 
"usual Euler charact er ist ic" of a natural number colnc id es ..,, i th the 
number of distlnct ptlme divisors of the natur.al number. 

Likewise,· for the poset P of partitions of a set under refinement, tha 
Mobius function is known, so one can calculate X here also. 

(b) If K is a closed q-simplex, i.e. the set of all subspaces of an 
n-dimensional vector space over the field ~ , then the equation X(K) = 0 

q 

= l: µ(1,S) coincides 1Nith an identity of Euler a.nd Cauchy involving 
SsK 

Gauss:tan coetttctent.s [~]· the number of k-dimensional subspaces of this 

vector space. 

Note that now the poset P comprises 
vector subspaces closed under s, and 
were the "closed simplices" of this P. 
following: 

all qcomplexes: K, i. e. sets of 
the special K 's mentioned above 
Re~ardina this P, Rota says the 

" As q __.. 1 ( f or an tmagtnar-y tteld wit.h PoneP element. ) 
becomes an ordinary simplicial complex, and ~ q-sphere 
ordlnary homology sphere." 

a q-complex 
becomes an 

Here by q-sphere he means a closed q-simplex minus 
fictional f ield of one element is dear to Mantn also 

its 
1 ] 

top. [Such a 

(c) tJhen P is the poset of faces K of a convex polytope, then K is 

always spherical, which implies that ona has µ(1,K) = ± 1, dependin~ on 
the parity of the dimension of the face K. .~ 

Comments 

(1) Rota considers the Grot.hendieck group obtained as the quotient, of 
the abelian group of all linear combinations · of elements of P, by the 
subgroup generated by elements of the form K + L - KUL - Kl"ll.. 

Slnce the coefficients of our linear combinations are from a ring, they 
can be multiplied in the obvious way, and it can be checked that this 
subgroup is an ideal, and so this Grothendieck group is in fact a rin€. 

Measures of P correspond 
the ring of coefficients. 

to 1 inear maps from the Grothendi eck r j ng 
Also, in this ring, one has the identlty 
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for all K. E P. This explains why any such !unctional is d~termined by 
.1 

its values on the closed simplices of P. 

(2) If one 1,1ants to look only at measures on P such that µ (K) -= µ (1.) 
1,1henever the simplicial complexes K and L are isomorphic, then the right 
Grothendieck group is of isomor-phism classes of simplicial complexes. 

One has the still smaller Gi;-othendieck group of p.l. classes of 
simpllcial complexes, and measures descending to it are as follo1,1s. 

Maye..-'s Theo..-em. The only subdiuision invariant measur-es on the po.s.•et 
of simplicial complexes ar-e those which take tz constant ualue on all 
closed simplices other- than 1. 

(3) There is another natural multiplication, 
K•L of simplicial complexes, which too 
Grothendleck sroups. 

that provided by the joln 
descends to the above 

The reduced Euler- char-acter-istic X is the only subdiuision inuariant 
m.easur-e on P which is such that X ( K • L) = X ( K) .X ( L) for- all simplicial 
complex.es K and L. 

Finally, it seems that JO.ln multiplicativity and subdivision invariance, 
are of interest not only for linear-, but also, ä la Lee, for. pol~momial 
maps on the vector space spanned by P. 

QUILLEN'S COBOR.DISM PAPER 

The [unoriented or complex] cobordism r.ing is the ring of coefficients 
of an extraordinary cohomology theory, and its structure [i.e. the 
theorem of Thom or Mllno..-] was sho1,1n by Quillen to follo1,1 from the 
properties of this geometric theory itself. [However, in the complex 
cas e, he used a homotopy-theoret ical l y proved finit eness r.esul t. Also 
note foC' this case that all manifolds, maps, and vectoC' bundlas below 
will have an almost complex structure and so a preferred orientation.] 

·cA> 
v l ew 
"'i th 

* Cohomology t.heor-y U • Since from the homotopy-theoretic point of 
this entails no loss of generality [cf. Remark !) we will work only 
smooth manifolds and smooth maps in the folloving : 

(1) Uq(X) will consist of all cobor-dism classes [ f] of proper- maps f: Z 
--. X of dimension - q: 

Here pr-oper- means pull-backs of compact sets should be compact, 
dimenaion means dim(TzZ) - dim(Tf(z)X) for any z .e Z, and tvo maps t 0 , 

f 1 : z0 , z1 --. X are to be called cobo..-dant. if there is a map F: \J--. X x 

[0,1), transversal to the two onds, vhose C'estriction~ to the inverBe 
images of the two ends coincides with the glven maps f

0 
and f 1 . 
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CU) Uq (X) is equipped with addition [ f] + [ f']. = [ f 11 f'] and 

* multiplication [ f ] • [ f ' ] = J:,. [ f x f ' ] • 

Here f .u f' : Z 11 Z' -+ X is the disjoint. smn, and f x f': Z x Z' -+ :X x 

* X the car-t.estan product. o f the maps f: Z -+ X and f' · Z' -+ X, wh i 1 e Ä 

Uq(X x X) --+ Uq(X) is the map induced by the diagonal J:,. --+ J:,. x J:,. an 
follows. 

[ The kt.h cup power [ f] 1--+ [ f ]~ can ba seen to coincide with the map 

Uq(X) -+ Ukq(X) defined by first mapping the cobordism class [f] of any 

f: Z--+ X to the class .in Ukq(Xk) given by the ~-fold product fk Zk--+ 

Xk of f, and then usine the map induced by the kth diagonal X--+ ~ as 
follows.] 

CUt) Each homotopy class of .s:mooth maps y X -+ Y in.duce.s the 

ftm.ctor-ial contr-auar-'iant map y * Uq ( Y) --+ Uq (X). r * [ t J == [ g * ( f) J. 

* Here g (f) [also denot .ed by f' in (v) below] is the pull-back~ undE!r any 
member g: X --+ Y of the homotopy c lass r whi eh is transversal to f, o f 
the given map f: Z--+ Y, i.e. the projection X x Z--+ X rcstrictEJd to X 
xy Z = {(x,z) : a(x) = f(z)}. 

* * The above r will also be WI'itten g for any g e r' ao as to haVEI th1;1 

* * usual g ~ h ~ g = h 

R.emar·k t. Thanks to this homotopy invariance we can def ine tfl (X) af" a 
simpllctal complex X by ombedding it r.ectilinearly in some euclidean 
space, and thon replaclng lt with the homotopy oquivalent smooth 
manlfold which occurs as its open tubular neighbourhood. [However note 
that the next property (iv) is for manifolds only.] 

Remark 2. Though he strongl y advocat es the above geometr i c approach, 

* Quillen's official definition of U (X) is still homotopy theoretical via 
Thom spect.l"a = {Thom spaces of the canonical vector bundles of the 
Grassmannians}. He did this part 1 y to sav e time"" Ei ince f or EJpectral 
cohomologl es i t was \.l('ll l-kno"1n ho"1 to def ine tha l"elat.tve cohomology 

* U (X,A) of' pail"s and verify t.he f'lrst. s:lx Eilenhel"g-St.eenrod axtoms:, but 
also becaus e, in the complex. cas e, h e needed 'lhc f act, "1hi eh hc 

could not prove by purely geometric means, that Uq(X) ls:- · a f'tnit.ely 
genel"at.ed abellan gl"oup f'or- any polyhedron X . 

Re1881"k 3. That the geometric and homotopy theoretical definitions of 

* U (X) agree is a routine genera.liza.tion of a celebrated theorem of Thorn. 
In f act Thom' s theorem is t.he cas e X = pt, because the c:oef'f'icient. l"irag 

* * U (pt) [or just U ] of our cohomology theory obviously coincides \.llth 
Thom's ring of cobordism classes of smooth manifolds. 
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* <B> Thom is:omor-phis:ms in lJ • 
cohomology or K-theory) happens 
structure. 

Our 
to 

cohomoloay 
also hav0 

theory 
th0 

[ l ike ordinary 
followin~ ~xtra 

<1v> Each proper- map g: Z -+ X af manifolds: af dimen.sion -n frtduces the 

functar-ial cauar-iant map g * : Uq ( Z) -+ lJq +n (X). g* [ f] - [ g<> f]. which 'i.S 

such that for- each ttbr-e s:quaroe 

:.rz h 

y -------4 

' h, 

* . * * 
one h.as: h o g * = ( g ' ) * o ( h ' ) . Bes:ide.s: we haue x• ( f * z ) = f * ( ( f x )• z ). for· 

q n+q 
all z e U ( Z) and x e U (X) • 

[For example the e>rdinary f*: 1f (X)-+ HO(pt) = Z of an n-manifold X 

evaluates cohomology classes on the fundamental n-cycle of X.] 

This structure auffices to ensure tha.t. whenever s: X~ V ia the zel"O 

* sect.ion of an n-dimensional vect.or- bundle n: V -+ X, th0n a*: U (X) -+ 

u* + n (V), defined aaain by a*[f] = [sof), but now with valuca in the 
c * 

compact.ly suppor-t.ed cobor-dls:m theor-y ll of V, ia an isomorphism. [To 
c 

define this theory one puts the approprlate relation of cobordism on all 
proper maps f: Z--+ V whose Images have compact closure, etc.] 

In the late 1960's mottts:, i.e. the [mostly conjectural] unjversal 
cohomology functors of G.-.ot.hendieck, had begun to create a. r:tir, which 
soon dl ed down, but has now r eturned as a storm 1 n f l.uenc ed by 

* Grothendieck's ideas, Qulllen emphasized the important fact that U is 
uniuer-sal amongst cohomology functors possessing the above structure ! ! 

Pr-opos:it.ion t. Giuen any cohomolo,gy theor-y yt* sati.s:fyin,g ( i )-( j v ). 

* * ther-e is a unique morphism U -+ fit which pr-e.s:er-ues, this .str-uctur-e. and 

map.s: 1 = [id] e u0 (pt) to a ,:iuen element a e f/to(pt). 

* Uq(X), Pr-oof. Since f *" (Z -+ pt) [id] = [ f ] for any [ f] e f: z -+ X, it 

follows that such a morphism of functors must map [ f] ' to f *" (Z -+ 
* geq (X). pt) (a) € The r.esult follows because one can check that thif.I 

element of 9t'q(X) is independent of the repr.esentative f of the cobor.dism 
class whlch is used in i ts def lni t ion. q.e.d. 

* <C> Char-acter-ls:t.ic classes in U . These can be def ined.J 
obeying (1)-(iv). in the standard way [cf. books of 
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Mllnot-Stashelf]: 

The Euler- class e(V) e Un(X) of an n-dimensional vi;ictor bundle V -to X 
* with zero section s is defined by e(V) = (s os*)(1) . 

The total Cher-n class o f a sum V = J.
1 

• 

def ined by c (V) = (1 + 

• • • 41t Ib 

+ o(1b )). 

of line bundle.n is 

1'h('ln the split.t.in« 

principle is used to extend this definltion to all V's as follows. 

* The Ler-ay-Hir>sch st.ruct.ure t.heorem for the cohomology U (PV) e>f the 
space of lines of V still holds because lt is a consequence of (i)-(iv). 

* lJe use n: PV -to X tö lift V to n (V) which . splits. Then using thi~ 

* * theorem it~ c(n (V)) arises as n imaae of a unique cohornoloay claas in 
* X, which is the required c(V) e U (X). 

* * This aives a functorial map c: K (X) -1> U (X) which obeys c(V • tJ) = 
c(V)•c(lJ). 

* [Though we won't usa it, we also have the Cher-n characLer eh: K (X) -to 

* U (X) 0 G„ a functoI"ial r-inif hom.omor-phism, which can also bo dof inod by 
this splittina method, by ~ummina the cohomoloay classes cxp(e(L)) as L 

* runs over the line bundle summands L of n (V).] 

* * Hore geneI"ally, there is a functorial map <"'t. : K (X) -1> ll (X)[) , 12 • 
... ] obeying ct.(V • lJ) = vt.(V)•ct.(lJ), defined in exactly the same way by 

* associating to each line bundle summand L of n (V) the factor 1 + t
1
a(L) 

+ t
2

e(L) 2 
+ 

The following observation of Novikov heralded the explicit use of formal 
groups in topology. 

Pro post t.ion 2. Th.er-e i.s: a unique po~r- .s:er-ie.s: in two 

* uar-iables. and with coef ficients in U (pt ) • .such that for- any two line 
bundle.s: over- any X one ha.s: 

•• '!; 

Moreouer- F is a commutatiue f'or-mal ~r-oup law. i.e. it obeys_ 

Proof. Since complex projective space with their canonjcal line bundles 
* are universal, lt suffices to compute the U of a product of such spacos 
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uslng (1)-(lv). Thls turns out to be the truncated polynomlal ring in 
the two Euler classes, etc., etc. q.e.d. 

For ordlnary cohomology one has F CT1 , T2 ) = T1 + T2 , whi 1 e f or compl ex 

Mis:chenk.o , in an appendix to Novikov's 

* paper, computed the lo,gar-ithm of the formal group law of lJ , from which 
lt follows easily [see Quillen's B.A.H.S. note] that the latter is the 
unive.-.s:al t"o.-•mal g.-.oup law which bad been studied before by Lazard . 
[However these arguments used the homotopy theoretically proved t.heorem 

* of Hilnor re the structure of the ~oefficient ring U (pt).] 

* CD> Ope.-.at.ions in U • The ·paper ls based on a clever exploitation 
of a baslc relationshlp between the following two operations: 

* Novikov cha.-.act.er• st:: lJ (X) 

ring homomorphlsm defined by [ f] 

* lJ (X)[t
1

, t
2

, . 

1-+ f * (et (v f)), 

] is the 

where v ::.: 
f 

functorial 

* f (TX) TZ 

E K(Z), denotes the virtual no.-.ma.l bundle of the proper map f: Z---+ X of 
manifolds. 

[ For exampl e i f f is the constant map 
ordinary st.[f] E Z[t 1 , t 2 , ], where 

from an n-manifold Z, then the 
dea(t.) = j, is homoeenous of 

J 
degree n, and lts coefficlents are the Che.-.n numbers of the manifold Z.] 

In the next definltion O is any manifold on whlch the cyclic group Zk 

operates freely, and B = O/Zk, e.g. we can even take O = Zk and B = pt. 

kth St.eenr-od powe.-. Uq(X) ---+ ukq(B x X) is def ined by f irst mapplng any 

[f], where f: Z---+ X, to the element [ id x f] of the equivar-i&nt eq 

[Apparently for the case Q one just gets the kth cup power. ? 

However, 
2m+1 

when Q = S , wi th the usual Zk act ion, then one gets new 

stuff: note that for "m = oo" the infinite-dimensional manifold B ::: Q/Zk 

is a classifying space BZk of the group Zk.J ~ 

'<E> The relationship between the above two operations is Proposition 
3 .17. lt says [in uer-y >~ou,gh analoay with a r.esult of Wu which might he 
its ordinary case] that "the Leray-Hirsch components of th&. kth Steenrod 
power are the Chern numbers of the manifold". ·Actually ther.e are other 
terms involved, so it looks more like an Index t"or•mula, and incorporates 
a non-trivial int.eg.-.ality theorem, i.e. implies that something A pr.ior.i 

* * in U (pt) e ~ is in fact in U (pt). 

[Though Karoubi's exposition 0 f the proof of this resul t .l s 
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understandable, we don't really understand the meanina of this important 
Index formula but we should return to lt later, since the cyclic 
cohomology verslon of the a.forementloned result of Uu will a.pparently 
shed new light on the topoloalcal lnvarlance of rational Pontr jagin 
classes.] 

The difficult [and appar.ently of not much interest for us] part of 

* Qulllen's paper is the deductlon of the structure of lJ (pt) from this 
index f ot"mula: 

First, by usina the intearality res~lt, and some computations reaardlng 
* the cobordlsm of lens spaces, _Quillen deduces that U (pt) colncides wlth 

* the subt"ing aenerated by the coefficients of U 's formal group law. 

Then, by uslna a tbeot"em o f Lazard, he de'1uces f rorn above Hi lnor' s 

* result that U (pt) is a polynomial ring havlna one aenerator in oach 
even dimenslon. 

Com.ments: 

(1) Formal aroups were defined by Bochner in the 40's to make some old 
calculatlons of Ue re "infinitesimal aroups" mor.e meaninaful. The 
t"elatlonshlp coh.omolo,gy +--+ formal cr-oups: came to the fore implicitly in 
Hirzebruch's great book, and was rna.de axplicit shortly after byNovikov . 
After thls came the above papet" o f Quillen , and l ts cont emporay 
expositions by Adams and karoubi. 

( 2) Note that the impor-tance of another contemporary extraordlnary 

* cohomoloay, i. e. the K of At.iyah-Hirzebr-uch, also stemmed from tha f act 
that the structure theorem re its coefficient ring, i.e. Dot.t. 
periodicit.y, was also a deep non-trivial fact. 

However its universality h.il·u1e~ seems to make cobordism theory much 
more basic, e.a. Bott periodicity may follow frorn the structure theorom 

* f or U (pt) ? Also this "mot i v ic v i ewpoint" suaaests that the f irst, 
i. e. the cobordism-dependent, pr.oof of the At.tyah-Singel" t.heorem "1as 
perhaps the "rlght" one after all ? 

(3) For developements subsequent to (1) e.g. a char.acterlzation 
theorem for formal aroups arislna from cohomologles, study of special 
cases like elliptic coh.omolo,gy, and the relatlonshfp of formal groups to 
thinas 1 ike binomial polynomials, functional equations, and umbr-al 
calculus see the 1991 paper of Oukhst.aber-kholodov and its 
references. 
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"Wl.PS "A THEOR.Y OF IMBEDDING " <contd.> 

CHAPTER. THR.EE. Though very simple, this is the heart of the book, since 
the baslc crlterla for embeddability, etc. are formulated here. 

A continuous mappina f: X ~ Y between polyhedron is called an 
embedding, resp. a local embeddina orimmersion, if it is one-one, resp. 
locally one-one [ i. e. each point has a neiahbourhood on which f is 
one-one]. 

J m 
Theorem. If l 1<1 embeds.·, r-es:p. immer-s:es:, in IR • then, for- each pr-ime p, 

ther-e is: a contin.uou.s 2
2
-map fr-·om Kp~ tJ(Kp) \ AK, r--esp. KP~ N(tJKP,AK) 

* 0 
\ AK, to a fr-ee 2. -.spher-·e Spm-m- l 

p 

Pr--oof. Clearly any embeddina, resp. immersion, X ~ Y, 
equivariant continuous map from the complement, resp. local 

induces an 
complement, 

of the diaaonal AX of the p-fold product f of X, into that of the 

diagonal AY of the p-fold product yP of Y. 

The result follows because a projection on the subspace orthogonal to 
m the diagonal subspace AIR , followed by a normalization, shows that the 

complement and local complement, of the diagonal of (IRm)p, both have the 
pm-m-1 equivariant homotopy of a sphere S , and the Z -action is free 

p 
because p ls prlme. q.e.d. 

m Corollar-y. If K embeds:, r-es:p. immer-ses, in IR • then. the Smith clas:s:es: 

of K~. resp. of KP [which are imaaes of those of K~ under the map 
0 

induced in equivariant cohomoloay by KP~ N(tJKP,AK) \ AK ~ tJ(KP) \ AK ~ 
2 0 

K * ] • m.us:t uan.ish in dimens:ions: 2 pm-m. 

Alter-nating cocycles. lt is 

obstructions to embeddabi 1 i ty or 

H! 18 CK~ or K~). are defined pur-ely 

been developed further as follows: 

important to note that the above 

immersibility, i. e. the i classes ö E: 

combinator-ially. The case p = 2 has 

•·' 

Dependlng on whether i is even or odd, consider the symmetric or 

skewsymmetric i-cochain oi, which takes value 0 on any a x e, unless the 
vertices of a and e alternate with respect to the total ~rder, with the 
val ue being 1, i f further the 1 east vert ex o f a u e i s in the f irst 
factor a. Then it can be verified [lt suffices to check the universal 

i example of octahedral spheres] that o is a cocycle which is in either 

+o 1 or -o 1 , and even this sign can be worked out in terms of the 
congruence class of i mod 8. 
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Examples. Non-embeddability and non-immersibility of some complexes is 
now checked via above criteria, e.g. Uu reproves theVan Kampen - Flo~es 

Theo~em [a-!n+ 2 does not embed in IR 2n, etc.] by using the above 

alternatins cocycles. 

ls:ot.opy et.c. In p.1. topoloay a whole gamut of such definitions have 
now been analysed. E.g. two embeddings are called (resp. ambient) 
isotopic if they are related by a 1-parameter class of embeddings (resp. 
self-homeomorphisms of the ambient space). [Likewise one speaks of two 
locally isotopic local embeddinas .] On the other hand two 
embeddings are called equivalerit, or in isopos:it.ion, if they are related 
by a sinale self-homeomorphism, which sometimes is required to be 
orientation preserving, etc. 

A choice of an orientation of !Rm fixes a generator of Hm-l((!Rm) 2 \ A!Rm) 

~ Hm-l(Sm-l). Under an embedding, resp. Immersion, of K in !Rm, this 

1 b 1 . Hm-l(K2) Hm-l(K
0
2), generator pul s ack to a cohomology c ass in * , resp. 

which obviously does not chanae und er isotopy [ but does cha.nge sign 

under an orientation-reversing homeomorphism of !Rm]. 
can be sometimes used [as Uu shows via some examples] 
embeddings or two Immersions are not isotopic, etc. 

So these cla.sses 
to check that two 

CHAPTER FOUR. This, the messiest chapter of this messy book, aave a 
"new" definition of St.eenr•od squa~es, so we' 11 return to it after having 
a look at an "old" definition first. 

Comments: 

(1) lt seems that the notions of embedding, Immersion, etc., can be 
aeneralized so as to view the Smith classes, of any given invariant part 

of -W(KP), as suitable obstructions. 

(2) Likewise lt seems, e.g. by usina o~ient.ed mat.~oids: other than the 
alternating one, that lt will be able to make the definition of these 
classes combinatorially more explicit even for p ~ 3. 

(3) The most challenging problem of course is to understand the 

limiting [or motivic or universal] case "Z __... s 1
" combinatorially, 

p 1 
perha.ps via cyclic cohomology, using the cyclic model of the aroup S . 

STEENROD-EPSTEIN 

In these [pre-1962] lectures Steenrod gave a new construction [= Chapter 
VI 1] o f cohomology operat ions which is bas ed on some simple f acts [ = 
Chapter V] regardins equivariant cohomology. 

[In this book., the inte€ral chain complex. o f a cell complex. K i.s also 
denoted by K. Y·ather- than c* (K); howeuey- the autho>'.S pr-efer· to u.se K Q) 
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L. r-ather- than just K x L. to denate C * ( K) ~ C * ( L) ~ C * ( K x L ) . ] 

A. Equtv.ari.ant Cohomology. 

Given a [possibly infinite] cell complex E and a module A, both with 
* prescribed actions of a group G, all equtv.ariant cochains: c E C (E;A), 

i.e. those satisfying c(g.c:T) = g.c(a-) for all g E G and a- E E, form a 

* * sub cochain complex CG(E;A), whose qohomology is denoted hG(E;A). 

Pr•opos:ition 1. I f the G-complex E i.s: such that the face.s: o f any cell 

* pr-eser-ued by a ,gr-oup element g ar·e al.s:o pr-e.s:erued by a. then hG ( E; A) is 

an imJar-iant of the equiuar-ian.t homotopy type 'of the G-.s:pace 1 EI. 
[Cf. first paragraph of the "Errata" of the book.] 

* Pr-oof sk.etch .. Under the given hypothesis, % (E;A) coincides with its 
* singular version hG( 1E1 ;A). q.e.d. 

A much more restrictive notion than the above is that of a t'r•ee action, 
i.e. one in which the conjugates g.a-, g .e G, of any cell cY E E, are 
pairwise disjoint as g runs over G. 

Pr-oposition 2. For any ,gr-oup G. ther-e ex.ist free acyclic G-complex.e.s 
EG. which are fun.ctorially G-homotopy equivalent to each other. 

* * So we can denote hG(EG;A) by H (G;A), and call it the cohomology ot' the 

gr-oup G with coeff icients in the G-module A. 

Pr-oof. Recall that an Cacyclic> c&l'r•ier- S from E to F associates to 
each cell cY of E an (acyclic) subcomplex S(a-) of F in such a way that cY 

~ 8 implies S(cY) ~ S(8). 

On the other hand, an equtvar-iant (acyclic) car-r-ier-, w i th r espect to a 
given G- (resp. H-) action on E (resp. F) and a group homomorphism rr: G 
~ H, will be one which also satisfies rr(g).S(a-) = S(g.a-) for all g .e G. 

For example, each (equivariant) chain map !/J: E __... F- gives rise to a [not 
necessarily acyclic] (equivariant) carrier, viz. its s:uppor·t supp(</>), 
which associates to each er .e E the subcomplex of F generated by the 
cells occuring [with nonzero coefficients] in the chain </>(a-). 

If a chain map !/J: e __... F, from a subcomplex e of E, is s:uppor-ted by some 
known acyclic carrier S from E to F [in the sense that supp(!/J(a-)) ~ S(a-) 
V a- .e e] then lt can be extended to a chain map !/J: E __... F supported by S 
as follows: 

One arranges the cells er of E - e in order of increasing dimension, 
t:/J ls def ined on each of these in turn so as to satisfy !/Jb = bljJ , 
being possible each time because of the acyclicity of S(c:T). 
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A simi lar argument [ arrange the G-orbi ts, whi eh are pair-wise disjoint 
cells, in order of increasing dimension, ... ] shows likewise that if an 
equivariant chain map ,P: e --+ F, from an equivariant subcomplex e of a 
free G-complex E, is supported by some equivariant acyclic carrier S 
from E to F, then lt can be extended to an equivariant chain map ,P: E--+ 
F supported by S. 

lt follows easily from this that the required EG must be unique upto 
G-homotopy equivalence. 

As far as the existence of EG ~oes, we can [followin~ Milnor] take EG = 
G•G• , where this intinite join of the point set G is to be provided 
with the (obviously free) diagonal G-action. This complex is acyclic 
because any cycle, whi~h has to lie in finitely.many factors, is bounded 
by lts cone, whlch ls avallable by using one more factor. q.e.d. 

Contlnulng wlth general arguments of the above klnd the authors 
partially check the fact that each G-module A determines a cohomology 

* * theory K 1---+ HG(K;A) = hG(EG x K;A), i.e. an abelian functor satisfying 

the first six Eilenber-c-Steenr-od a'Xioms, which will be called 
G-equivariant cohomology with coefficients in G-module A. 

[As Borel pointed out lt is useful to note that the diagonal action on 
the product o f G-compl ex es is f r ee as soon as oni:.- o f the f actors i s 
free: e.g. the homotopy a'Xiom for the above cohomology theory follows 
from Proposition 1 because EG x K is free. On the other hand note that 
the diagonal action of a join of G-complexes is free iff all of them are 
free.] 

Furthermore, 
by the map 

imltating the usual definition [i.e. cross product followed 
induced in cohomology by the diagonal] they equip this 

* * * cohomology with natural cup products HG(K;A) ~ HG(K;B)--+ HG(K;1'MB), for 

any G-modules A and B. 

Again, just as in the ordinary case G = 1, each short exact sequence 0 
--+ A --+ B --+ C --+ 0 of G-modules has an associated long exact Bockstein 
sequence in equlvarlant cohomology. 

To "do auroa" wlth thla cohomology later we need lta ~alue on a point, so 
* * the authors compute some group cohomologies HG(pt;A) = H (G,A). 

Proposition 3. (a) Additiuely the cohomolocy of the cyclic pr·ime or-der
cr-oup 2 with coefficient.s: in the tr-iuial 2 -module [F i.s civen by p p p 

H1 (Z ;CF ) ~ CF , V i ~ 0. 
p p p 

(b) Fur-ther-mor-e we can choose 1ffener-ator-.s: w ·• i ~ O. of the.s:e cr·oup.s: 
l 

which behaue a.s: under- with r·espect to cup pr-oduct: 
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l 
For p = 2, w1 = (w1 ) . 

For p odd prlme, w2 j = (w 2 )j and w2 j+l = Cw 2 )j.w1 . 

<c:> Also one has w
2 

= ß(w
1 

). where ß is Oie connectinc homomorphism of 

the Bockstein sequence of 0 ---+ IF ---+ IF 2 ---+ IF ---+ 0. 
p p p 

Cd> The nor-malizer of the r-otation .s·up€Y"oup Z of the .s·ymm.etr-·ic croup S 
p p 

uia inner automor-phi.sms (resp. inner automor-phi.sms: 
i 

acts on H (Z ;IF ) 
p p 

multiplied by the 
iff l is an euen 
multiple. 

parity of the permutation ) . 
(resp. odd) multiple of p-1. or 

This action is trivial 
one less than such a 

[They obtain similar answers when p is any odd number, a.nd surely, a.t 
least by now, the answers must be known even for any p E ™ ?] 

Pt~oof s:ketch. The authors do the above computations combinatorially via 
coboundaries of an explicit Z -equivariant subdivision of the unit 

p 
sphere of eventually zero infinite sequences of complex numbers. q.e.d. 

Flnally they conslder the trans:Ce~ or Integration [= summatlon over each 
coset] map between the cohomology of a group and that of a subgroup of 
finite index.. [This map goes in a direction opposite to that of the 
obvious functorial map, and a composition of the two maps equals 
multlplylns by thls lndex, etc.] Uslns lntegratlon they check e.g. that 
each cohomoloay class of a finite aroup G has a finite order which 
divides the order of G. 

B. Cohomology Operations. The Interpretation of semi-simplicial cohom
ology groups as homotopy groups arose from the following. 

Proposition 4. Considerin.c the m.odule A as a chain com.plex. nonzero only 

in dimension ::zero, one has a natural bijection fr-om Hq(K;A) to the set 
of chain homotopy classe.s: of chain. maps K ---+ A of decr·ee -q. . 

[In fact we will also need the Interpretations of "cochains", 
· "cocycles", and "cohomologies" of K given in the proof below.] 

,_,"l 

Proof. By definition a cochain u € Cq(K;A) identifies with a linear- map 

u: K [= C*(K)] ---+ A of degree -q. Furthermore u e Zq(K;A), i.e. u is a 

cocycle, iff this map u: K-+ A vanishes on q-boundaries, 1. -e. iff it is 
a chain map of dearee -q. Finally it can be checked that the difference 

u - v of two such cocycles is in Bq(K;A), i.e. u and v arec:oh.omoZocous·, 
iff there ls a chain. homotopy between these chain maps u, v: K ---+ A of 
degree -q. q.e.d. 

DeCinition oC external powers: P. 
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Let G be a subgroup of the group of all permutations of p letters, which 

will be assumed to act on the p-fold product Kp of any complex by 
permuting the factors. l.Je choose any EG and shall use the diaeonal 

action of G on EG x KP. 

Given a q-cochain u: K __. A of K, and any p ~ 2' we denote by Pu: EG X 

KP __. AP the pq-cochain of EG X "ff' obtained by composine its p-f old 

tensor product up: KP __. AP with the map EG X "' 
__. 

"' obtained by 
takine the tensor product of the au,gmentation ~- : EG __. z and the 

identity map of KP. 

To ensure that up: !<p -4- AP is a G-map we need to use, dependine on 
whether dim(u) = q is even or odd, two different action.s: o f G on the 

p-fold tensor product Ap: for q even we just permute the factors, while 
for q odd we also multiply by the parity of the permutation. These two 

G-modules will be denoted respectively by A~ and AP. 

l.Jith this precaution Pu ls equivariant, and so we have a [non-linear] 
function 

Proposit.ion 6. The m.ap 
uar-iantly cohomolocous) 
[ non-1 inear] map 

P im.aces (cohom.olocous) 
equiuariant cocycles. and 

cocycles to (equi
thu.s: induce.s: a 

Proo~ The auementation beine a chain homotopy, lt ls clear that if the 
dearee -q map u: K -+ A ls a chain map, then the deeree -pq equivariant 

map Pu: is also a chain map. Llkewise [usln12 acycllc 

carriers] lt is easy to check that if u and v are chain homotopic, then 
Pu and Pv are equivariantly chaln homotoplc. q.e.d. 

Next the authors check that these maps P commute wlth the maps lnduced 
by any K --. L and lts p-fold carteslan product. „. 

Also they show that lf thls external map P ls composed with the map 

h~q(EG x KP;A~) --. hgq(KP;A~) --. Hpq(KP;AP), lnduced by the projection 

EG x KP--. KP, then we obtaln Hq(K;A)-+ Hpq(K~;AP), [u] ..._. [u] x .. x 
[ u] , l. e. the p-fotd cros:~.: prodU<.:t. 

[And so, composing further wlth the diagonal induced map, one would just 

obtaln the p-fold cup product Hq(K;A) -+ Hpq(K;AP), so we'll turn to 
what happens lf we use the diagonal flrst.] 
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Interna! powers ~ These are the associated [non-linear] maps 

* wher e d : h~q (EG x Kp; A~) ---+ is induc ed by 

the dia€on.al map d: K _; KP. 

[The authors avoided definina an internal P at the cochain. leuel because 

there was no canonical choice . of a cellular map K---+ i' which induces 
* d : however lt seems lt should be possible to repair this state of 

affairs by using the lfler--Wu subdivision of Kp~) 

To say more about P lt is necessary to compute the equivariant 

cohomology H~q(K;A~), which they do for the following case. 

Case G = rot.a.t.ion ~roup Z , p pl'ime, and A = CF . Now i t can be checked p p 
that A~ and AP both coincide with CFP with the trivial ZP-action. 

The group actions of K and CF 
p 

being trivial, the required cohomology 
* * Hz CK;CF P) = hz (EZP x 

p p 
EZ /Z has of course the 

p p 
same cohomology as the group Z . 

p 
So, by using 

Ktinneth's theorem, which applies since we have field coefficients, 

* * * Hz (K;CFP) = H (Zp;CFP) liO H (K;CFP). 
p 

So we can define the Ktinneth component.s Pk: Hq(K;IF P) ---+ Hpq-k(K;IF P) of 

the internal cyclic power-s P: Hq(K;A) ---+ H;q(K;CF ) by 
p p 

where the "'k are as in Proposition 3. ~ 

For the case p = 2, we now define the St.eenl'od squa.res Sq 1 Hq(K;IF
2

)---+ 

Hq+l(K;IF 
2

) by 

i Sq u = P 1u. q-

And, for p an odd prime, the St.eenr-od reduced powers ~ 1 : 
Hq+Zl(p-l)(K;IFP) are defined by 
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-1 = (a ) .PC 2")( 1)u, p,q q- 1 p-

where the significance of the normalizing constant 

from (d) of the following. 

a p,q will be clear 

Pr·opos:i tion 6. (a) Cyclic powers: P: Hq ( K; A) ~ Hpq ( K ·CF ) are linear. z , p 
p 

(b) Furthermor·e, thefr· components Pk: Hq(K;IF ) --+ Hpq-k(K;IF ) are, for q 
p p 

even (resp. odd), 2ero unless k is an even (resp. odd) multiple of p-1. 
or cme less than such a multiple. 

(c:) If p = 2. then we have the cross pr-oduct rule 

while for an odd pr-ime p one has 

p2k(u x v) = ± Ei+j=k p2iu x p2jv, 

wher-e the si,gn equal.s: the par-ity of (~ldim(u) .dim(v). 

(d) The pk•s vanish al.s:o if k ex.ceeds q(p-1). and Pq(p-l): Hq(K;CFP)---;, 

Hq(K ;IF ) is multiplication by a non2er-o con.s•tant a e 1F . 
p p,q p 

* Proof sketch. (a) One checks that d vanishes on the image of the map 

induced by 
q-cocycles, 

essentially 
is linear. 

inte~ra.tion. 

then P(u+v) 

(u+v)P - up -

Kp;IF p) ~ ~q(EZP X Kp;IF p) 
p 

Then it is verified that, if 
P(u) P(v), which by 

U a.nd V 

definition 
a.r e 
is 

lies in the image of this map. * So P = d P 

[ 0. Find all subgroups of the symmetric group S for which this works.] 
p 

(b) Consider the functorial maps from the int~rnal powers of the 
normalizer of Z in S to the internal cyclic powers. Now use the fact 

p p 
that a.ctions via inner automorphisms are trivial for the normalizer's 
powers, while for the cyclic powers they have, by Proposition 3(d), 
trivial components only for the stated values of k. 

(c) For any group G of permutations of p letters, if one applies to Pu x 
Pv the map induced by the diagonal group homomorphism G ---;, G x G, then 
one gets P (u x v) upto the above sign, because this is the change in 

orientation resulting from the shuffle Kp x Lp ~ (K x L)P. 

For the case of the rotation subgroup one obtains the required rules for 
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the components of the internal cyclic power because, for the case of an 
odd prime, we know from Proposition 3(b) that "'a·"'b is zero when a and b 

are both odd. 

( d) But for the fact that the constant a i s non::c:ero, the re.s:t will p,q 
follow by repeatedly usin€ the fact that powers ar-"2' functorial in K: 

First note that homomorphisms induced in cohomology by the 
its q-skeleton are monomorphism in dimensions :S q, 
q-dimenslonal class u, Pku "1ill b.e zero in K iff it is 

q-skeleton Kq. 

inc 1 usion o f 
so, for a 
zero in i ts 

Now find a map from i(l to 51 , whl eh 
this oriented q-sphere to u. 

pulls back the dual fundamental 
class of . 
suffices to consider the case when K is 
fundamental class, the required a p,q 

So, by functoriality again, it 

an or~ented Sq and u is its dual 
e:an be found by computin.€ the 

hom.omorphism. P q (p-l) of Hq (Sq ;lF P) = lF P [ u] . This computation, which 

shows that lt is nonzero, ls sketched later. 

As far as the 

Hq(Sq;lFP) ----;. 

homomorphisms 

vanishing assertion goes, it can be in doubt only for P qp 
HO(Sq·IF ) which must be zero since it commutes wlth • p , 

induced by the inclusion {pt} s sq. 

Computaticm o f a = a : p,q p 

An application of the product rule to K x s1 

sign being the parity of (~). (i). 
gives a = ± 

q 
the 

1 1 
So it only remains to compute a.

1
, i.e. the homomorphism P 

1
: H (S ;IF ) p- p 

----;. H
1

cs
1 

;IF P) of an oriented circle. This ["1hich incredibly is the 

hardest part of the whole proof !] ls done combinatorially via 
coboundarles starting from the subdivision of the circle into t"1o arcs. 
lt tur·ns out that a

1 
€ IF P equals -1. q.e.d. 

Pl"opos:it.ion 7. (&) The Steem·-od square.s· Sq i: Hq ( K ;lF 
2

) ----;. Hq + i ( K ;lF 
2

) are 

natural transformations obey·in€ SqO 

an.d Sq(x.y) = Sq(x) .Sq(y). wher-e Sq = i Er Sq . 

i > 

(b) For any odd prime p, the Steenrod reduced power-s: :Pi. Hq (K;IF P) ----;. 

Hq+ 2 i.(p-l)(K;IF P) are natural tran..sfor-mations obeyin.€ :PO = id. :Pq/ 2 u = 
uP, :P 1 u = 0 for i > q/2, an.d :P (x. y) = :P (x) .:P (y), wher-e :JA = I:- :Pi. 

1 

Pr-oof. Fellows easily from Proposition 6, and the definitions of sJ 
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and :P
1

. q .e.d. 

The "axioms" 1 ist ed above [ the product rul e is cal l ed Car•tan's t'or-mula] , 
not only lmply the remaining "axioms" [Bockstein behaviour/Adem's:: 
r-elat.ions], but also are enough to uniquely determine these cohomology 
operatlons: for this see Chapter VIII of the book. The rest of the book 
is based solely on these "axioms". 

Comments 

(1) In his 1947 Annals paper Stee-nrod had defined squares 
i-pY·oducts·. The definition discussed above, ""hich ties thern 
""ith the cohontolo€y of the finite r-otation €Y-Oups, seerns to 
version of that given in his 1953 Commentar-i paper. 

usina cup 
up nicely 
be a ne"" 

Pr:-evlously, in their 1936 Armals paper, R.ichar•ds::on and Smith had 
cornput ed the cyclically equivar-iant hom.olD€Y of pth power-s of complex.es. 

i 
The definit ion o f the dual [ or inverse] Smit.h oper•at.ions:: Sm , Sm- Sq = 
id, appeared irnplicitly in their calculation, as ""as pointed out later 
in "Wu's 1965 book. 

Follo .... ing Milnor-, operations are also interpreted as the action of a 
kno""n Hopf al€ebr-a [generated by syrnbols subject to relations suggested 
by Adern's formula, and equipped ""ith the co-rnultiplication suggested by 
Cartan's forrnula] on cohornology. Analogously, following Ser-r•e and 
C,ar.tan, they can be interpreted also as a hornotopy-theoretic action of 
the cohom.olo€y of an Eilenber-€-Maclane spac:e on cohornology. 

Arnongst the strikina applications of oper-ations are the 
[ernbeddings, topoloaical invariance of Stiefel-Uhitney 
those of Adams [vector field and Hopf invariant problerns] 
operations also. 

ones of Thom 
c lass es] , and 
who used other 

( 2) The definition of oper-ations €iuen in Wu•s book is uer-y clos:e to 
that discussed her-e. The only difference beina that instead of 

associating to K the equivariant cornplex EG x KP [G beina say the cyclic 

perrnutation group on p letters] he works with KP [and its subcornplex K~ 

and subdivision U(Kp)] its:elf. Again the operations are obtained by an 
"equivariant localization" of pth powers of cocycles to the diagonal. 

( 3) One can r-eplace pr-oducts: by joins: in the~e definition.s . For 

exarnpl e though K • • K• G• G• ... , unl ike i ts sub c el 1 cornpl ex '/!' x EG, 
is not free, lts G-action still satisfies the requirement of Proposition 
1, and it has the same diagonal as the aforementioned sub cell complex. 

This should enable us to use join. multiplicatiuity to shorten some 
proofs [say the computation of the a 's ?] and should [using e.g. the p,q 
fact that EG = G•G• is a deleted join] enable us to put Steenrod's 
and Uu's definitions ln a single framework. 

( 4 ) It would be in.teres:tin€ to €en.er-ali~e this combinator-ial theor-y to 
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the infinite abelian ,gr-oup of cir-cular- r-otation.s:. The methods of cyclic 
cohomolo,gy suggest that this is now possible, and it would be 
interestlng to do it. because it might lead to a conceptual 
comblnatorial deflnition of rational PontrJasin classes, etc. 

( 5) Also one .s:hould cener-alize this theor-y to some other- finite. but 
n.on-abelian. permutation cr-oup.s:. This should be possi bl e, because 
startina with say Car-tan-Eilenbe~~·s 1956 book [Chapter 12). a mass of 
inf ormation is avai labl e about aroup cohomoloay, the essential 
ingredient in the above method. 

This should also relate to computations of cohomolosies, and equivariant 

localizatlons of pth powers of cocycles, for invariant par-ts of W (~) 
other than the dlasonal. 

•" 
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