REVIEWS (IV)

Comments

(1) Consider any subset \mathbb{B} of the power set $\mathscr{P}(X)$ of a set X which is closed under interections, unions, and complements. Equip is with the addition $\mathrm{A}+\mathrm{B}=(\mathrm{A} \mid \mathrm{B}) \mathrm{U}(\mathrm{B} \mid \mathrm{A})$ and multiplication $\mathrm{A} \cdot \mathrm{B}=\mathrm{A} \cap \mathrm{B}$. Since $A+A=A$ and $A . A=A$ we see that $\$$ is a Boolewn algelura, i.e. an aleebra over the field \mathbb{F}_{2} of 2 elements in which all elements are idempotents. A theorem of Stone [see p. 168 of Kelley] assures us that all Boolean aleebras are isomorphic to such algebras is $\subseteq \mathscr{P}(X)$.

A closure algebra iso a Boolean aleebra equipped with an idempotent obeying Kuratowski's conditions with respect to the order defined by $A \leq$ B iff $A=A . B$. A theorem of Mokinsey-Tarski [Annals (45), 1944] assures us that any closure algebra is isomorphic to a Boolean algebra is $\subseteq \mathbb{P}(X)$ preserved by the closure operator of a topology on X.
(2) "The fres cloctme at wonnd generated by one creamoul has 16 elements" ! This "theorem" occurs on page 180 of Birkhoff's "Lattice Theory", and is attributed as being in Kuratowski's thesis [Fund. Math. 3 (1922), 182-231].

It implies that, in any topological space X, and for any $A \subseteq X$, the algebra $\mathcal{B}(A) \subseteq \mathscr{P}(X)$ over \mathbb{F}_{2} obtained by applying the processes of closure, complementation, and intersection, has at most 16 elements [the additional sets being obviously none other than and $X]$ and so is at most 4 - dimensional !

Now $\mathbb{E}(A)$ contains in particular $A ' s$ buundary $b d(A)=c l(A) \cap c l\left(A^{\prime}\right)$, which does not in general lie in $S(A)$. Regarding bd: $P(X) \rightarrow \mathcal{X}^{2}(X)$, which is not in general \mathbb{F}_{2}-linear, an interestine fact is that one hasi bdebd.bd $=$ bdobd alwetys [see (13), p.56, of Kuratowski's "Topology"]. Thus the semigroup generated by bd has only two elements and one has $(b d)^{t}(A)=0$ iff this equation holds with $t \leq 2$.

However $A_{0} \theta=0^{*}$ [the registered trademark of soth centur-y mathematics !] certainly does not have the analogue $b d o b d=0$ and $b d \quad b d$ is quite distinct from $\theta \cdot \theta$ even for a geometrical simplex: it' yields its boundary rather than 0 . For $\mathbb{Q} \subseteq \mathbb{R}$ one has $b d \cdot b d(\mathbb{Q})=0$ while $b d(\mathbb{Q})=\mathbb{R}$.

bdabs $(\mathbb{Q} \cap[0,0)=\{0,1\} \neq 0$

(3) Unfortunately the above "theorem" from Bickhoff's book is false ! In fact in his thesis [op. cit. p.197] Kuratowski gave an example of a subset A of a spruce of orvinuts for bivich \$3(A) is inftitle ! [later on McKinsey-Tarski also made use of this same example !] It is surprising that Birkhoff, who gives these as his sources, made above mistake ! [Even if one adds to the set of \mathbb{R} above given, which yielded 14 sets, the interval $[4,5]$, one sees already that $\mathbb{B}(A)$ has at least 17 elements.]

Kuratowski's result was understood better by Hammer [see Kuratowski's book D. 43 for ref.] who showed [in manner indicated above] that if is is an onder feversine thootution of a poset t ant p ix an order presterving
and expundins idermpotent of D, then the semigrioup S_{p} senerated by i and p has at most 14 elements. [There are also two refs. to a Chaphana who apparently studled the semleroup $S(X)$ further.]
(4) There might be some homology, defined in terms of [the closure operator of] the topology \mathcal{J} of X, such that $H_{0}(X)$ is the free abelian group generated by the components [as against the path componests] of X, and which need not obey the "homotopy axiom", but which coincides on polyhedra with the usual homology ?

Since $b d(A)=0$ iff A is open and closed, it seems that bd still might be involved in the definition of such a homology? Also the homology of $b d:$ ker (bdabd) \rightarrow ker (bdobd) : i.e. the homology obtained by cutting down $\mathcal{D}(X)$ to the mod 2 subspace ker (bdobd), might be pertinent ?
\leftrightarrows ?? bdros not 仿-fineal!
Another problem: can Hammer's result be augmented by an interesting characterization of all [or say all order-preserving] idempotents p : $\mathscr{F}(X) \rightarrow \mathscr{F}(X)$, pop $=p$, for which the semieroup S_{p} is finite? Also, do such questions tie up with some (?) known finiteness theorem re Boolean algebras of some (?) Cohers, to which Bourgain once alluded ?

Another Interestine problem might be to explore the Kuratowskl kamlenous of a space [i.e. the definition $X \longmapsto S(X)$] from the categorical viewpoint, e.e. it seems that this simple topoloeical iavariant provides obstructions to embeddabllity of an X in $\%$?
(5) It is convenient to employ the interva? notation for any tolalky or clenced set X, so e.e (., x] will denote $\{y \in X: y \leq x$]. [Some care is necessary however to distinguish an interval (a, b) from the ordered pair (a, b), and also to distinguish intervals in different sets: e.g. the interval (0,1) of ordinals is empty, but that of real numbers is somethine else again.] The order topulagy of X is the one generated by all intervals of the type (.,x) or ($\mathrm{y},$.).

Theorem. For ary tatally order cas sat X the intervals $[\mathrm{x}, \mathrm{y}]$ are compact.
Proaf Let 8 be a family of open sets of $[x, y]$ which covers $i t$, and let c be the supremum of all z such that some finite subfamily of $\&$ covers $[x, z]$. Now choose a member U of containing c, and $a z$ in I slightly to the left of c such that $[z, c]$ is in U. Add U to a finite subfamily covering $[x, z]$ to get another finite subfamily covering $[x, c]$. Unless c $=y$ this finite subfamily will contradict the maximality of c. q.e.d.

Note that for \mathbb{R}, which is an example of a totally ordered space, the above result implies the classical Heine-Borel Theorem; i.e that a subset of real numbers is compact iff it is closed and bounded.

Recall also that the standard covers argument shows that any compact and Hausdorff X is normal, so, for any ordered set, all intervals of type $[\mathrm{x}, \mathrm{y}]$ are normal.
(6) Examples involving ordinals. In the following all intervals are of ordinals, and equipped with the order topoloey, with ω, resp. Ω, being Observe pidempretent \Longleftrightarrow semi granp of p has just me element. So : rigrinf gevended by the orden reversin' 122 innteution i and any ordu preservinf obviausly senigrarp gonerated by p alone is finite. Is this sufficient when
the first infinite, resp. uncountable, ordinal. [For the definitions of other highlighted terms see Kelley.]
$C[0, \Omega]$
(i) No sequence in $[0, \Omega)$ converges to its boundary point Ω.
(ii) Both $[0, \Omega]$ and $[0, \Omega)$ are normal but their product is not.
(iii) Though the rectangle $[0, \Omega] \times[0, \omega]$ is normal, the subspace obtalned from it by deleting its corner (Ω, ω) is not.
(iv) The Stone-Cech compactification of $[0, \Omega)$ coincides with its one-point compactification which of course is $[0, \Omega]$.
(v) The space $[0, \Omega)^{\prime}$ is unifonmizable, and there is a unique uniformity compatible with its topology, and with respect to this it is not complete.

For more see pp. 29-30, $59-60,76,131-2,163-5,167,172,204$ and Appendix of Kelley.
(7) Frechet's convergence axioms. For a topological space X the set 8 of all pairs (S, x), where $S: D \rightarrow X$ is a net, $x \in X$, and $1 i_{d} S(d)=x$, has the following properties:
(i) If (S, x) is such that $S(d)=x$ for all d, then $(S, x) \in \mathscr{8}$. (ii) If $(S, x) \in \mathbb{8}$ and T is a subnet of S then $(T, x) \in \mathbb{8}$. (iii) $(S, x) \notin \mathbb{E}$ implies $(T, x) \notin \mathbb{f}$ or all subnets T of some subnet of S. (iv) If $S: D \times E \rightarrow X$ and $T: D \rightarrow E$ are such that $(S(d,),. T(d)) \in \&$ for all d, and $(T, x)=\mathscr{\&}$ for some $x \in \mathscr{E}$, then there is a function $f: D \rightarrow E$ such that $(R, X) \in \&$ where $R: D \rightarrow X$ is given by $R(d)=S(d, f(d))$.

Kelley shows that conversely a set y of pairs (S, x), with S a net in X and $x \in X$, which satisfies (i)-(iv), determines a unique topology on X such that 1 inin $S=x$ iff $(S, x) \in$.
[As a matter of fact Kelley's (iv) is more complicated : his iterated limit theorem involves a function $S(d, e)$ with $d \in D$ and $e \in E_{d}$, a directed set depending on d. Replacing each E_{d} by $E=U_{d} E_{d}$, and extending S to $D \times E$ by imaging new points. (d, e) to the limits lim $e^{S(d, e)}$, it seems that our version, i.e. axiom (iv), is equally good.]

To see this he defines $p(A)$ to consist of all $x \in X$ such that $(S, x) \in \mathscr{y}$ for some net S in A. This self-map p of (X) is shown to satisfy Kuratowsk's condition [with $p \circ p=p$ following from (iv)]. So there is a unique topology such that $p(A)=c l(A)$, etc., etc.
(8) Urysohn's theorem characterizes second countable metric spaces. To see this note that Hausdorfness is obvious and that it is also true that a metric space is normat:

This follows by noting that, for any $A \subseteq X$, the function $x \mapsto d(x, A)=$
inf $\{d(x, y): y \in A\}$, Aistance from x to A, is continuous, because $\mid d(x, A)$ $-d(y, A) \mid \leqslant d(x, y)$ by the triangle inequality. So closure of any A consists of points at zero distance from it, and two disjoint closed sets can be contained in the two disjoint open sets consisting of all points of the space nearer to one of them in comparison with the other.

The Hilhart rnhe is thets a universat second roumbrhas metric space, in the sense that any second countable metric space embeds in it.

Abstract characterizations of non second countable metric spaces were discovered later by Smiriac, Nagatas, et al.
(9) With the product topology, the space $P(\mathbb{N})=2^{\mathbb{N}}$ of all subsets of \mathbb{N} [and more generally, $X^{\mathbb{N}}$ where X is any topological space] has the properly that any countable power of this space is homeomorphic to itself.

We can think of the elements f of $\oiint \mathbb{N})$ as all sequences $f \mathbb{N} \rightarrow\{0,1\}$. Associating to each f the corresponding binary decimal we get a continuoms surjection of this space onto the unit interval. Using above homeomorphism, and a countable product of this surjection, we get a continuous surjection of $\mathscr{H}(\mathbb{N})$ onto any countable power of $[0,1]$.

On the other hand if we think of the elements f of $2^{\mathbb{N}}$ as all sequences $f: \mathbb{N} \rightarrow\{0,2\}$, and associate to each f the corresponding ternary decimal, we get an emtredding of $N(\mathbb{N})$ in $[0,1]$, the image being the well known Cambow zel, which is obtained from [0,1] by successively excluding the open middle third intervals.

The aforementioned continuous surjection of $\mathscr{P}^{(}(\mathbb{N})$ onto any countable power of $[0,1]$ can now be extended, by using the arc connectedness of the cube, to these excluded intervals, thus obtaining a Peano curve, 1. e. a continuous sur jection of $[0,1]$ onto any countable power of $[0,1]$.

In fact [see pp.164-65 of Kelley] any compact and are commentect metric space is a contimense image of $[0,1]$.

WHITEHEAD GROUPS

Talk of 16.4 .93 by F.T.Farmell [based on joint work with L. Fi. gernes]:
(1) In his famous work on combinatorial homotopy, J.h.G.W............. defined, for each group Γ, an abelian group Wh(Γ) by

$$
W h(\Gamma)=1 i m \Gamma \backslash G L_{n}(\mathscr{N} \Gamma) /\left[G L_{n}(2 \Gamma), G L_{n}(2 \Gamma)\right]
$$

It measures the stable obstruction to reducing a matrix over सर to a diagonal one having \pm (ep.elts) only.
(2) The algebraical task of computing these groups was well-begun by Whitehead's student Higman, and essentially by continuously developing Higman's ideas, much is known. For example, Easss showed that Wh($\mathbb{R} / \overline{\mathrm{R}})=$
free abelian eroup of rank $(p-3) / 2$, while Bass-Hellew-Swan showed that for any free abelian group it is zero, and later stallings showed it is zero for free groups. The conjecture whether Wh(t) $=0$ for all torsion free groups Γ still remains. Again, Bass showed that for Γ finite, Wh($)$ is finitely generated, but on the other hand Murchy has shown that, for many ordinary infinite groups, e.e. for $\Gamma=\mathbb{Z} \oplus \mathbb{Z} \dot{\mathbb{Z}} / \mathbb{Z}$, it is not finitely generated.
(3) The following is the culmination of work of Sunte, Stallings, Eax-den, Mazw, Kixby-Siebenwaran etc.
h-COBORDISM THEORFM. For cury closied munifold M of dimension 5 or mor e, there is a bijection W \& , 2 W , betaven the set of alt he colvorchisms w ith base M and the Whitehear gromp Wh(n $\left.{ }_{1} \mathrm{M}\right)$ of the fundumatai grous of M

Here by " h-cobordism with base M " is meant a manifold-with-boundary w with ow a disjoint union of M and N [the "top of the cobordism"] which is a homotopy cylinder [i.e. deformation retracts to both top and bottoml. The above $\tau W \in$ Wh $\left(H_{1} M\right)$, called the tos-si... of the h-cobordism, is zero iff the h-cobordism is the eenuine cylinder $M \times I$.
 $0(n, 1)$, then $\operatorname{Wh}(\Gamma)=0$.

This they prove geometrically by showing that h-cobordisms having as base the followine kind of manifold must be all trivial.

A riemannian manifold M^{n} is called hyperbolic if its sectional curvature is identically -1 . It is known that these are quotients of hyperbolice n-space of by a discrete suberoup Γ of $O(n, 1)$. One can use the Poirscawe model of il unit disk in euclidean n-space with geodesica diameters or circular arcs cuttine boumdary perpendicularly.

Earlier Hsisng and Farrell hat proved samo mompl with M flat.
(5) One ingredient in the proof is a refinement of the next result which applies to the induced h-cobordism having as base an appropriate bundle SM over M.
 h-cobordism having M as base and having all tracks of size bounded by s. is trivial.

Here by "a track" of W one means the loop in M obtained by projecting the deformation of a point of W into the end M.

Besides this refinement the triviality of h-cobordisms on SM uses the hyperbolic structure, and the geodesic flom in these bundles, to "shrink" tracks far enoueh to apply this themoth

A product formula, for the torsion of the h-cobordism over SM in terms of that over M, now shows that the h-cobordisms over M are also trivial.

Analogous tools give calculations for Wh(Γ) when Γ is a discrete subgroup of any Lie group and some interesting general conjectures.

WU'S "A THEORY OF IMBEDDING ... "

(A) PREFACE. The space X_{*} of all injective mappings from \mathbb{Z}_{2} to a space X, i.e. the space of all ordered pairs $\left(x_{1}, x_{2}\right)$ of distinct points of a space X, will be equipped with the free involution $\left(x_{1}, x_{2}\right) \longleftrightarrow\left(x_{2}, x_{1}\right)$.

This \mathbb{Z}_{2}-space is important for embedding theory because X embeds in Y only if there is a continuous \mathbb{Z}_{2}-map $X_{\star} \rightarrow Y_{*}$. In fact note that each embedding $f: X \rightarrow Y$ induces an involution preservingembedding $f_{\star}: X_{\star} \rightarrow$ Y_{*}, viz. the one defined by $f_{*}\left(x_{1}, x_{2}\right)=\left(f\left(x_{1}\right), f\left(x_{2}\right)\right)$, however the additional fact that the \mathbb{Z}_{2} map $X_{\star} \rightarrow Y_{*}$ is one-one will be ignored.

Any continuous \mathbb{Z}_{2} map $X_{*} \rightarrow Y_{*}$ pulls back the equivariant Smith class $o^{i}\left(Y_{*}\right) \in H_{s}^{i}\left(Y_{*}\right)$ of the free \mathbb{Z}_{2}-space Y_{*} to the Smith class $o^{i}\left(X_{*}\right) \in$ $H_{g}^{i}\left(X_{*}\right)$ of X_{*}. So we have the embeddability criterion: if X embeds in Y, and the ith Smith class of Y_{*} is zero, then that of X_{*} must also be zero. For example, if X embeds, in \mathbb{R}^{m} then $o^{m}\left(X_{\star}\right)=0$. This last follows from the fact that $\left(\mathbb{R}^{m}\right)_{\star}$ has the \mathbb{Z}_{2}-homotopy type of the antipodal (m-1)-sphere.

For a simplicial complex K we will denote by K_{\star} the cell complex consisting of all $\sigma \times \theta$, where σ and θ are disjoint simplices of K, and equip it with the involution $\sigma \times \theta \longleftrightarrow \theta \times \sigma$.

The equivariant cohomology class of K_{*} which counts the isolated and separated double points of a general position piecewise linear map f of an n-complex K in $2 n$-space, is in fact independent of f. The vanishing of this obstruction class is obviously necessary for the piecewise linear embeddability of an n-complex K in $2 n$-space. We will see that this embeddability criterion of Vam Kampen is included in the above embeddability criterion because this obstruction to p.l embeddability of an n-complex K in $2 n$-space coincides with $o^{2 n}\left(|K|_{*}\right)$. The key point in this proof will be that K_{*} is $a \mathbb{Z}_{2}$-deformation retract of $|K|_{*}$.

Completing an argument given by Van Kampen, we will show conversely that if $\mathrm{n} \geq 3$, and $o^{2 n}\left(X_{*}\right)=0$, then the r polyhedron X embeds piecewise Hnearly in 2 n-space. This result shows in particular that piecewise linear n-manifolds embed piecewise linearly in $2 n-s p a c e: ~ a ~ c o r o l l a r y ~$ proved directly by Van Kampen. In fact the key additional idea used by Wu and Shapiro to complete Van Kampen's argument was the one which was
used by Whitney to obtain the smooth analogue of this corollary, viz. that a smooth n-manifold embeds smoothly in $2 n$-space. [Far reaching improvements of these constructions were given later by Haefliger.]

It will be shown that the mod 2 cohomology operations of any polyhedron X can be defined in terms of the mod 2 classeso (X), in particular we'll see that an embeddability criterion of Thom is included in our criterion by showing that if $o^{m}\left(X_{*}\right)=0 \bmod 2$ then the dual mod 2 operations $\mathrm{Sq}^{i}: H^{r}(X) \rightarrow H^{r+i}(X)$ of X vanish for $2 i+r \geq m$.

It will be shown likewise that the mod 2 characteristic classes of any closed manifold X can be defined in terms of the mod 2 classes $o\left(X_{\star}\right)$, in particular we'll see that an embeddability criterion of stiefel and Whitney is included in the above criterion by showing that if $o^{m}\left(X_{\star}\right)=0$ mod 2 , and X is an n-manifold, then the dual mod 2 characteriatic classes sw $_{i}(X)$ of X vanish in dimensions $i \geq m-n$

Besides considering the space X_{*} of injective functions from \mathbb{Z}_{2} to X, we'll also introduce some analogous spaces of functions from \mathbb{Z}_{p} or S^{1} to X, and indicate how their equivariant characteristic classes should determine the remaining cohomology operations, resp. characteristic classes, of the polyhedron, resp. manifold X.

Also we'll consider analogous results concerning obstructions to immersions and isotopies.
(B) CHAPTER ONE. An obvious invariant of an embedding $Y \subset X$ is the homotopy type [or even the topological type] of the complement $X \mid Y$.
[As Wu mentions in the preface, non-embeddability arguments based on complements have been given by Hopr, Hantzsche. Thom, and Peterson, with the latter two considering ring structure and cohomology operations. For example, by using Alexander's duality theorem, Hopf showed that $\mathbb{R}^{\prime} \mathbb{P}^{n}$ does not embed in \mathbb{R}^{n+1}.]

An embedding $Y \subset X$ of polyhedra is called tame if (X, Y) is homeomorphic to some pair (K, L) of simplicial complexes, and any such (K, L) is then called a [topological] triangulation of (X, Y). Note that, by additional subdivisions if need be, we can always assume that L is full in K, i.e. is such that any simplex of K which has all its proper faces in L is itself in L.

Theorem 1a. If L is full in K, then there is a deformation retraction of its complement K \ L onto [K | L] the largest simplicial complex contained in it.

Proof. The fullness guarantees that any point p of the topological complement K, which is not in the simplicial complement, is an interior point of a unique line segment [x, y] all of whose interior points are of
this type, and which has x in L, and y in [$K \backslash L$]. Compressing each [p, y] to [y] one gets the required deformation retraction. q.e.d.

Likewise, for L full in K, there is a deformation retraction of the open [simplicial] neighbourhood K \ [K $\mid \mathrm{L}]$ of L onto [K \mid [K $\mid \mathrm{L}]$] = L. So its homotopy type is also an [albeit not very interesting !] topological invarlant of (K,L).

We will see below that the homotopy type of the deleted neighbourhood K \ [K \ L] \ L [which of course is not the same as the homotopy type of $[\mathrm{K}|[\mathrm{K} \mid \mathrm{L}]| \mathrm{L}]=0 \mathrm{i}]$ is also a topological invariant of (K,L).

However for the proof it is convenient, and for a later result necessary, to work with a somewhat smaller neighbourhood, which Wu defines by means of a "preliminary subdivision" as follows.

Consider the continuous surjection $r: K \rightarrow[0,1]$ which maps L to 0 , [K L] to 1, and which is linear on each of the segments mentioned in the proof of Theorem 1. We define the closed tubular neighbourhood of in K by $N_{t}(L, K)=r^{-1}[0, t]$, the tube of L in K by $T_{t}(L, K)=r^{-1}[t]$, and the tubular complement of L in K by $E_{t}(L, K)=r^{-1}[t, 1]$, where $t \in(0,1)$. Since the combinatorial type of these [geometric] cell complexes is unaffected by the choice $t \in(0,1)$, we will frequently just write $\mathrm{N}(\mathrm{L}, \mathrm{K}), \mathrm{T}(\mathrm{L}, \mathrm{K})$, and $\mathrm{E}(\mathrm{L}, \mathrm{K})$.

Obviously the homotopy types of $N(L, K), T(L, K)$, and $E(L, K)$ coincide, respectively, with those of the neighbourhood, deleted neighbourhood, and complement of L in K.

Theorem 1b. The homotopy type of the deleted neighbourhood, of a full subcomplex L of a simplicial complex K, is a topological invariant of the pair (K, L).

The following is an easy generalization of the argument given in Seifert-Threlfall [pp. 125-128 of english translation] for the special case $L=(v)$ [when the tube $T(V, K)$ happens to be homeomorphic to the link of the vertex v].

Proof. Let (K',L') and (K,L) be any two full [topological] triangulations of the tame polyhedral pair (X, Y).

Choose in succession numbers $t_{1}, t_{1}, t_{2}, t_{2}, t_{3}, t_{3}$, in (0,1) such that the tubular neighbourhoods $N_{i}=N_{t_{i}}(L, K)$ and $N_{i}{ }^{\prime}=N_{t_{i}},\left(L^{\prime}, K^{\prime}\right)$, of Y in X, are nested in each other as follows:

$$
\mathrm{N}_{1} \supseteq \mathrm{~N}_{1}^{\prime} \supseteq \mathrm{N}_{2} \supseteq \mathrm{~N}_{2}^{\prime} \supseteq \mathrm{N}_{3} \supseteq \mathrm{~N}_{3}^{\prime}
$$

Consider any point p of the bounding tube T_{2} of N_{2}. As we linearly shrink N_{1}, to N_{2} ', ptraces a path p_{t} ending [after time $t_{1}{ }^{\prime}-t_{2}{ }^{\prime}$] at a
point q of the bounding tube T_{2}, of N_{2}.
Likewise, as we linearly expand N_{3} to N_{2}, any point q of the bounding tube T_{2}, of N_{2} 'traces a path q_{t} ending [after time $t_{2}-t_{3}$] at a point s of the bounding tube T_{2} of N_{2}.

A juxtaposition $p_{t} \cdot q_{t}$ of two such paths is nested within N_{1} and N_{3}. We now linearly shrink this annulus to the bounding tube T_{2} of N_{2}. The resultant projections of such juxtapositions on T_{2} show that the identity map of T_{2} is homotopic to the map $\psi \circ \phi: T_{2} \rightarrow T_{2}$, where $\phi: T_{2} \rightarrow$ T_{2} ' is given by $\mathrm{p} \longmapsto \mathrm{q}$, and $\psi: \mathrm{T}_{2}{ }^{\prime} \rightarrow \mathrm{T}_{2}$ is given by $\mathrm{q} \longmapsto \mathrm{s}$.

Likewise, using the fact that a juxtaposition $q_{t} \cdot p_{t}$ of such paths is nested within N_{1}, and N_{3}, it follows that $\phi \circ \psi$ is homotopic to the identity map of T_{2} ' q.e.d.

The homotopy types of the closure and boundary of the open simplicial neighbourhood of a full subcomplex L of K [i.e. of the closed star and link of L in K] are not topological invariants of (K,L):

For example, a 3-vertex circle K is the closure of the simplicial neighbourhood of a closed edge L, while the boundary of this nelehbourhood is the vertex not in L; and if we subdivide K by using a fourth vertex outside L, both homotopy types change.

But, for the smaller or tubular neighbourhoods defined above, one does have the following pleasant fact.

Theorem 1. If L is full in K then the homotopy type of the closure algebra generated in K by L and intN(L,K) [the open tubular neighbourhood of L in K] is a topological invariant of the pair (K, L).

This generalization is proved by Wu by making some straightforward modifications in the arguments of Theorem 1 b .
[As Wu mentions in the preface, non-embeddability arguments based on homotopy invariance of the pair (tubular neighbourhood, tube) have been given by Whitmey, Pontrjagin, Thom, Massey and Atiyah, with the last two considering ring structure and K-theory also.]

Also it is easy to generalize all these Seifert-Threlfall type results to any pair of cell complexes (K,L), with L "full" in K in the sense that a cell lying in neither [K | L] nor L should be the join of two faces, one in $[K \mid L]$ and the other in L.

So we can use the following to apply these results to the pth diagonal embedding $\Delta:|K| \rightarrow|K|^{p}$ of K, which associates to each point of K the corresponding constant map $\{1,2, \ldots, p\} \rightarrow|K|$.

Theorem 2. Let K_{*}^{p} denote the sub cell complex of K^{p}, the p-fold product of a simplicial complex K, which consists of all cells of the type $\Sigma=$ $\sigma_{1} \times \ldots \times \sigma_{p}$ with $\sigma_{1} \cap \ldots \cap \sigma_{p}=\emptyset$. Then the disjoint union of $\Delta(K)$ and $K_{*}{ }_{*}$, together with all joins $\Delta(\sigma) \cdot \Sigma$, where $\Sigma \in K_{*}^{p}$ is such that ova ${ }_{i} \in$ K for all i, is a cell subdivision of K^{p}.

We indicate below an argument [see also c.(6)] which shows that it is in fact the joins version of the above result of Wu which is more natural.
Proof. To be more precise, K^{p} is the product ${ }^{1} \mathrm{~K} \times \ldots \times{ }^{\mathbf{p}_{\mathrm{K}}}$ of p disjoint copies of K; so, using the notation ${ }^{j_{\theta}} \in{ }^{j} K$ for the fth copy of $\theta \in K$, each member of this cell complex is of the type ${ }^{1} \sigma_{1} \times \ldots \times{ }^{p} \sigma_{p}$, where the σ_{i} 's are nonempty,simplices of K.

We will consider also the join $K^{p}={ }^{1} K \quad \ldots{ }^{\mathrm{P}} \mathrm{K}$, a simplicial complex each of whose members is of the type ${ }^{1} \sigma_{1} \cup \ldots u{ }^{p} \sigma_{p}$ [this disjoint union is also written ${ }^{1} \sigma_{1} \cdot \ldots .{ }^{p} \sigma_{p}$, or even $\sigma_{1} \cdot \ldots \cdot \sigma_{p}^{p}$ if no confusion is possible] where now each σ_{i} is any [possibly empty] simplex of K.

The space $\left|\mathrm{K}^{\mathbf{p}}\right|$ is the disjoint union of all closed ($p-1$)-dimensional geometrical simplices with vertices $\left\{{ }^{1} x_{1}, \ldots, x_{p}\right\}$, where again ${ }^{j} y \in$ $\left|{ }^{j} \mathrm{~K}\right|$ denotes the fth copy of a point $y \in|K|$. We will identify $\left|\mathrm{R}^{\mathrm{P}}\right|$ with the subspace of $\left|K^{p}\right|$ consisting of the centroids of these simplices.

The subcomplex of K^{p} consisting of all simplices ${ }^{1} \sigma_{1} \cup \ldots U^{p} \sigma_{p}$ with σ_{1} $\cap \ldots n \sigma_{p}=\emptyset$ will be denoted K_{*}^{p}. Note that the intersection of $\left|K_{*}^{p}\right|$ with $\left|K^{p}\right|$ equals $\left|K_{\star}^{p}\right|$, where K_{\star}^{p} is the aforementioned sub cell complex of K^{p} consisting of all cells ${ }^{1} \sigma_{1} \times \ldots \times{ }^{p} \sigma_{p}$ with $\sigma_{1} \cap \ldots n \sigma_{p}=0$.

We now note that there is a unique way [take $\sigma=\sigma_{1} \cap \ldots m o_{p}$] of writing any simplex $\sigma_{1} \cdot \ldots \cdot \sigma_{p}$ of K^{p} as the join of a [possibly empty] simplex $\sigma *$... σ having all factors "same", and a [possibly empty] $\operatorname{simplex} \theta_{1} \cdot \ldots \cdot \theta_{p}, \theta_{i}=\sigma_{i} \mid \sigma$ of K_{*}^{p}.
We assert that there is a simplicial subdivision $W\left(\mathbb{R}\right.$) 'of R^{R} which, restricted to each simplex $\sigma_{1} \cdot \ldots \cdot \sigma_{p}$, is the join of the face $\theta_{1} \cdot \ldots$ - θ_{p}, with a subdivision of the complementary face $\sigma \cdot \ldots \cdot \sigma$, and which is such that the closure of each simplex of the type $\sigma \cdot \ldots$. σ gets
retriangulated as the join $\Delta(\bar{\sigma}) \cdot(\bar{\sigma})_{*}^{\mathrm{p}}$.
The main point in the verification of the above assertion is that $(\bar{\sigma})^{p}$ is a simplicial sphere of the right dimension. This follows at once by using the multiplicative property,

$$
(K \cdot L)_{*}^{p} \cong K_{*}^{p} \cdot L_{*}^{p},
$$

of this construction, and the fact that the simplicial complex $\{v\}_{*}^{p}$ consists of all proper subsets of the cardinality p set $\left\{{ }^{1} v, \ldots, p_{v}\right\}$.
The intersection with $\left|K^{p}\right|$, of the aforementioned simplicial subdivision $\left|W\left(K^{P}\right)\right|$ of $\left|K^{P}\right|$, gives a cell complex $W\left(K^{p}\right)$, which is the required cell $W\left(K^{p}\right)$ subdivision of K^{p}. q.e.d.
So K_{*}^{p} is a deformation retract of the of the space of all non constant functions $\{1, \ldots, p\} \rightarrow|K|$.
[Shapimo's direct proof of this corollary was erroneous. Also note that for $p \geq 3$, the pth product conflguration space of K, i.e. the subspace of $|K|^{p}$ consisting of all one-one functions $\{1, \ldots, p\} \rightarrow|K|$, does not have the same homotopy type as the sub cell complex of K^{p} determined by the condition that the factors σ_{i} of the cells $\sigma_{1} \times \ldots \times \sigma_{p}$ be pairwise disjoint. For example, if K is a closed $1-s i m p l e x$ and $p=3$, then there is no such cell, but certainly $|K|$ has 3 -tuples of distinct points.]

The symmetric group of all permutations π of $\{1, \ldots, p\}$, and so in particular the cyclic subgroup \mathbb{Z}_{p} generated by the rotation $\pi=(p, 1$, 2, $\ldots p-1)$, acts on $|k|^{p}$ by $\left(x_{1}, \ldots, x_{p}\right) \longmapsto\left(\frac{x}{n}(1), \cdots, \frac{x}{n}(p)\right)$. Likewise there are group actions on K_{*}^{p}, etc. It is important to observe that the aforementioned deformation retraction commutes with these group actions.

From now on, for the sake of simplicity, Wu confines himself to the case when p is prime: so this cyclic action is free in the complement of the diagonal, and the quotient of the above Wu triangulation of K^{p} gives an equally nice triangulation of K^{p} / \mathbb{Z}_{p}.

Having checked that all homotopy invariants of the complement, tube, etc., of a diagonal embedding $K \rightarrow K^{p}$, are p.l. [even topological] invarlants of K, the chapter ends with the following result of Lee concerning enumerative invariants for the case $p=2$.

Theorem 3. Let V_{2} be the subspace of all sequences $c_{i j, k} \in \mathbb{R}$ having the
property that

$$
\boldsymbol{\Sigma}_{i, j, k} c_{i j, k} \cdot|\{(\sigma, \theta): \sigma \in K, \quad \theta \in K, \quad|\sigma|=i,|\theta|=j, \quad|\sigma n \theta|=k\}|,
$$

is invariant under subdivision for all simplicial complexes K . Then V_{2} is 3-dimensional and has an integral basis which, applied to any K, yields the Euler characteristics of $\mathrm{K}^{2}, \mathrm{~K}$ and K_{*}^{2}.

Proof. Since it seems more natural well in fact first establish that there is a joins version of the above basis.

Under the set theoretic surjection $W\left(K^{2}\right) \rightarrow K^{2}$, defined by $\alpha+\beta \cdot \gamma \quad \mapsto \quad((\sigma$ $=a \| \beta, \theta=a(y)$), the pre-image of any (σ, θ) with $|\sigma|=i,|\theta|=j$ and $\left|\sigma^{\prime} \theta\right|=k$, consists of precisely 2^{s}. $\left[\begin{array}{l}k \\ s\end{array}\right]$ simplices of cardinality $i+j-k+s$, for each $0 \leq s \leq k$.

This follows because this pre-image consists precisely of all simplices $\alpha \cdot \beta \cdot \gamma=(\alpha \cdot(\sigma \mid \alpha) \cdot(\theta \mid \alpha)) \cdot(\theta \cdot \lambda \cdot \mu)$, where $\alpha=\sigma$ one, and λ and μ are any two disjoint faces of a, and so the required number coincides with the number of cardinality s simplices $\lambda \cdot \mu$ of $(\bar{a})_{*}^{2}$, a k-fold join of 2 points.

So the number of cardinality t splices in $W\left(K^{2}\right)$, and its subcomplexes $\Delta(K)$ and K_{*}^{2}, is given by

$$
\begin{gathered}
f_{t}\left(W\left(K^{2}\right)\right)=\Sigma_{i+j-k+g=t} 2^{s} \cdot\left[\begin{array}{l}
k \\
s
\end{array}\right] \cdot f_{i j, k}(K), \\
f_{t}(\Delta(K))=f_{t t, t}(K), \text { and } f_{t}\left(K_{\star}^{2}\right)=\Sigma_{i+j=t} f_{i j, 0}(K),
\end{gathered}
$$

respectively, where $f_{i j, k}=\mid\{(\sigma, \theta): \quad \sigma \in K \quad \theta \in K \quad|\sigma|=i \quad|\theta|=j$ $|\sigma n \theta|=k\}$. The second and third formulae follow from the first because a cardinality t simplex of $W\left(K^{2}\right)$ is of the type $\alpha+\theta \cdot \theta$ if $i=j=k=t$, and $s=0$, and it is of the type $\theta \cdot \beta \cdot \gamma$ if $k=s=0$ and $i+j=t$

Since the Euler characteristic of K^{2} coincides with the alternating sum of the face numbers of its subdivision $W\left(K^{2}\right)$, it follows that the integral element of V_{2} given by

$$
c_{i j, k}=\Sigma_{s}(-1)^{i+j-k+s} \cdot 2^{s} \cdot\left[\begin{array}{l}
k \\
s
\end{array}\right]
$$

calculates $x\left(K^{2}\right)$, i.e. $x\left(K^{2}\right)=\Sigma c_{i j, k} \cdot f_{i j, k}(K)$ for any K. Likewise the integral element given by $c_{i j, i}=(-1)^{i}$ and $=0$ otherwise, calculates
$x(K)$, and the integral element given by $c_{i j, 0}=\sum(-1)^{i+j}$ and $=0$ otherwise, calculates $x\left(K_{\star}^{2}\right)$. It is obvious that these three elements of V_{2} are linearly independent, so $\operatorname{dim}\left(V_{2}\right) \geq 3$.

We only sketch Lee's method for checking dim $\left(V_{2}\right) \leq 3$, because it is [probably unnecessarily ?] laborious:

He assumes inductively that it is true that the truncations of the above elements, determined by $i, j<n$, do span the space $V_{2, n-1}$ of truncations x_{n-1} of elements $x \in V_{2}$. Next he applies any $x \in V_{2}$ to all degree n complexes of the type $K=\bar{\sigma} \bar{\theta}$, and also to subdivisions obtained from them by deriving one edge. The above inductive hypothesis, plus the invariance under subdivision of x, is then used to grind out the inductive step.

To pass to the products version of this basis simply note that cells of K^{2} correspond to simplices of K^{2} having both factors nonempty, and having dimension one more than the cells, so $-x\left(K^{2}\right)=x\left(K^{2}\right)-2 \cdot x(K)$ and $-x\left(K_{*}^{2}\right)=x\left(K_{*}^{2}\right)-2 \cdot x(K)$. q.e.d.
[For $p=1$, Mayer had previously considered the analogous space of linear combinatorial invariants, and shown that it is one-dimensional and spanned by the Euler characteristic: the above method of Lee does give a very simple proof of Mayer's theorem, but obviously ought to be simplified further to consider the cases $p \geq 3$.]

Another nice integral element of V_{2} is that which calculates the Euler characteristic of the tube $K_{0}^{2}=T\left(W\left(K^{2}\right), \Delta(K)\right.$) [which coincides with its products version $\left.K_{o}^{2}=T\left(W\left(K^{2}\right), \Delta(K)\right)\right]$. This can be easily calculated by noting that each cell of this tube corresponds to a simplex, of one dimension more, of $W\left(K^{2}\right)$, which is neither in \hat{K}_{x} nor in $\Delta(K)$. Thus $-x\left(K_{0}^{2}\right)=x\left(\mathrm{~K}^{2}\right)-x\left(\mathrm{~K}_{\star}^{2}\right)-x(K)$.
(C) CHAPTER TWO. Given an action of a group G on a simplicial complex E, there is the induced action of its group ring $\mathbb{Z} G$ on its cochain complex $\left(C^{*}(E), \delta\right)$, and so each $p \in \mathbb{Z} G$ gives $r i s e$ to the canonical short exact sequence of cochain complexes,

$$
0 \longrightarrow \operatorname{ker}(p) \longrightarrow C^{*}(E) \xrightarrow{p} \operatorname{im}(p) \longrightarrow 0 \text {, }
$$

and thus an associated long exact cohomology sequence.
Theorem 4. If E is any G-complex, and $t \in G$ is any group element af finite order p which acts freely on E, then

$$
\begin{gathered}
\operatorname{im}(1-t)=\operatorname{ker}\left(1+t+\ldots+t^{p-1}\right) \text { and } \\
i m\left(1+t+\ldots+t^{p-1}\right)=\operatorname{ker}(1-t) .
\end{gathered}
$$

in each $C^{1}(E), i \geq 0$.
Proof. The inclusions \subseteq are obvious. For the reverse inclusions \supseteq we will use the fact that the orbit of each nonempty simplex under t has p distinct members. Thus, if we choose an ordering ($\sigma, \mathrm{t} \sigma, \ldots, \mathrm{t}^{\mathrm{p}-1} \sigma$) of each such orbit, then there exists one and only one cochain having any specified length p sequences of values on these orbits.

A cochain c lies in jer ($1+t+\ldots+t^{p-1}$) iffy the sequences of its values ($c_{0}, c_{1}, \ldots, c_{p-1}$) have sum zero. For each such zero sum sequence it is possible to choose [starting with any initial term co] a [unique] sequence ($c_{0}^{\prime}, c_{i}^{\prime}, \ldots, c_{p-1}^{\prime}$) such that each c_{i}^{\prime} is c_{i} more than the cyclically preceding c_{i-1}^{\prime}. Clearly the corresponding cochain c, satisfies $(1-t)\left(c^{\prime}\right)=c$.

On the other hand c lies in ger (1 - t) if the sequences of its values $\left(c_{0}, c_{1}, \ldots, c_{p-1}\right)$ are constant. For each such constant sequence choose any sequence $\left(c_{0}^{\prime}, c_{1}^{\prime}, \ldots, c_{p-1}^{\prime}\right)$ which sums to this constant value. Clearly the corresponding cochain c, satisfies $(1+t+\ldots+$ $\left.t^{p-1}\right)\left(c^{\prime}\right)=c$. q.e.d.

Thus, if t acts freely on E, the cohomology sequences associated to the pair $\left(d=1-t, s=1+t+\ldots+t^{p-1}\right) \in \mathbb{Z} G$ are inter-related, viz. these Richardson-Smith sequences run

$$
\begin{aligned}
& \ldots \rightarrow H_{d}^{i}(E) \rightarrow H^{i}(E) \rightarrow H_{g}^{i}(E) \rightarrow H_{d}^{i+1}(E) \rightarrow \ldots, \\
& \ldots \rightarrow H_{s}^{i}(E) \rightarrow H^{i}(E) \rightarrow H_{d}^{i}(E) \rightarrow H_{s}^{i+1}(E) \rightarrow \ldots,
\end{aligned}
$$

where $i \geq 0$, and $H^{k}(E), H_{d}^{k}(E)$, and $H_{s}^{k}(E)$ denote the kith cohomologies of $C^{\star}(E), C_{d}^{*}(E)=\operatorname{ker}(d)$ and $C_{s}^{*}(E)=\operatorname{ker}(s)$, respectively.

Equivariant Kronecker duality. The t 's of cochains and chains are dual to each other, so the same is true for the s 's and d's. We define, for any cochain-chain pair x, y which is killed by the $d ' s, r e s p . s$'s,

$$
\begin{aligned}
& \langle x, y\rangle_{d}=\langle s(a), c\rangle=\langle a, s(c)\rangle, \\
& \langle x, y\rangle_{s}=\langle d(a), c\rangle=\langle a, d(c)\rangle,
\end{aligned}
$$

resp.

Where a, c is any cochain-chain pair such that $s(a)=x$ and $s(c)=y$,

unimodular pairing [mike $\langle x, y\rangle$ restriciod is meh x 's and $y^{\prime} s$].
The equivaniant sites formaler $\langle\delta x, y\rangle_{d}=\langle x, \partial y\rangle_{d}$ and $\langle\delta x, y\rangle_{3}=\langle x, \partial y\rangle_{\text {. }}$
$=\langle x, y\rangle$
follow at once from the ordinary Stokes formula $\langle\delta x, y\rangle=\langle x, \partial y\rangle$.
Using these, Wu establishes that, over field coefficients, there is a perfect duality, between the above cohomological RS sequences, and the analogous homological RS sequences.
Smith classes of t. These are the classes $o^{2 k}(E) \in H_{d}^{2 k}(E), o^{2 k+1}(E) \in$ $H_{s}^{2 k+1}(E)$, where the zeroth class is represented by the cocycle which is 1 on each vertex, and the other classes are obtained successively from it, by alternately applying the connecting homomorphisms $H_{d}^{i}(E) \rightarrow$ $H_{s}^{i+1}(E),[s c] \mapsto[\delta a]$, and $H_{s}^{i}(E) \rightarrow H_{d}^{i+1}(E)[d c] \longmapsto[\delta c]$ of the above RS sequences.

Topological invariance. Wu states without proof that the RS sequences depend only on the equivariant homotopy type of $(x, t), X=|K|$, and that in fact they identify with their singular versions which can be defined analogously whenever t is a free self-homeomorphism of order p of a topological space \mathbb{X}.

Examples. These are powers of $\mathbb{R}^{\mathbb{m}}$ minus the diagonal with cyclic action, so with quotients projective or lens spaces; and finite groups acting on spheres; and the antipodal involution in a tangent sphere bundle of a manifold.
(D) CHAPTER THREE. (To be continued.)

Comments

(1) Amongst the many interesting embedding techniques of general topology are those given by Cantor [using nary expansions, and leading to Pean curves], by Urysohn [using Stone-Cech families of functions, and leading to metrization], by Menger-Noebeling [using finite dimensionality and Bare category theorem for metric spaces], etc.
(2) Pontrjagin's original definition of characteristic classes for manifolds was just like Van Kampen's definition of "characteristic classes" for polyhedra: these were cohomology classes dual to some cycles residing on any general position self-intersection of the manifold in a suitable euclidean space. Thus, just like Van Kampen's embeddability criterion for polyhedra, the Pontrjagin or Stiefel-Whitney embeddability criteria for manifolds followed immediately from this original extrinsic definition of characteristic classes.

The progression of ideas "tubular neighbourhoods, normal bundles, tangent bundles, bundles ... " then led to an intrinsic definition of characteristic classes of manifolds. Analogously, for polyhedra, Van Kampen's definition was made intrinsic by Wu by using X_{*} etc.
(3) Wu's tubular neighbourhood of a full subcomplex of a simplicial complex [though itself not a simplicial complex] is small and thus apparently more convenient for enumerative purposes than the orieinal [simplicial] one of Whitehead, in which the "preliminary subdivision" consists in going without any ado to the second derived.

However it does seem to be more natural to adhere to the standard practice in p.l. topology of confining attention to only [full and] plecewise linear triangulations (K, L) of (X, Y), i.e. those which are p.1. homeomorphic to the polyhedral pair (X, Y) :

The "Whitehead variant" of Seifert-Threlfall's [original] result is that the p.l. type of the link of a vertex v is a p.l. invariant of (K, v), and, more generally, the variant of Theorem 1 is that the p.l. type of the closure algebra generated by L and its open tubular nelghbourhood in K is a p.l. invariant of the full pair (K,L). However note, as against: the p.l. type of the tubular complement $E(L, K)$, it is still only the homotopy type of [L \ K] which is a p.l. invariant.

For more on p.1. topology see Whitehead, Zeeman, Stallings, Hudson, Rourke-Sanderson, etc. For instance, for the case when X is a [p.1.] manifold, it is known that the tubular neighbourhood and tubular complement of any subpolyhedron are always manifolds-with-boundary which have the tube as their common bounding manifold.
(4) The above review shows that Van Kampen Theory needs only [mostly finite] simplicial complexes, and some concomitant special kinds of geometric cell complexes [which are still "simplicial", but in the categorical sense].

However, as in Lefschetz's "Algebraic Topology", 1942 (AMS Colloq. Pub., v.27), the "complexes" used in Wu's book are the following very general ones which had been introduced by Tucker:

A poset P, equipped with a dimension function $P \rightarrow \mathbb{N}$, and an incidence function $P \times P \rightarrow(1,0,-1)$ supported on its covering relation $C \subset P \times P$, such that $\operatorname{dim}(\sigma)=\operatorname{dim}(\theta)+1 \forall(\sigma, \theta) \in C$ and $\Sigma_{\phi}[\sigma: \phi][\phi: \theta]=0 \forall(\sigma, \theta)$ $\in P \times P$, is called an abstract cell complex.

For more on such early generalizations of simplicial complex see Steenmod's "Reviews". These [somewhat ad hoc] definitions have now lost their original purpose because, by interpreting it categorically, Ellenberg, Kan et al. have shown that the domain of validity of the [more natural and elegant] simplicial method is very large.
(5) Finer Wu subdivisions. The homotopy type of the pth join configuration space of $X=|K|$ coincides with the subcomplex of K^{p} consisting of all simplices $\sigma_{1} \cdot \ldots \cdot \sigma_{p}$ with σ_{i} 's pairwise disjoint.

This can be seen by using a further subdivision $W\left(K^{P}\right)$ of the subdiviaion $W\left(K^{P}\right)$ of $K^{\mathbf{P}}$ which was suggested to us by Bier [p. 46 of 13.2.92-24.5.92].

Recall that $W\left(K^{P}\right)$ consisted [of joins] of all sequences $\theta_{\alpha}, \theta_{1}, \ldots$, θ_{p}), with $\theta_{a} \cup \theta_{i} \in K$, and $\rho_{1 \leq i \leq p} \theta_{i}=\theta$

On the other hand $W\left(K^{p}\right)$ consists [of joins] of all "sequences" \{ θ_{α} : $\theta \neq$ $a \subseteq\{1, \ldots, p\}\}$, with $U_{a \in C}{ }^{\theta} a \in K$ whenever C is totally ordered by \subseteq, and θ_{α} disjoint from θ_{β} whenever α and β are incomparable under \subseteq. [A proof that $W\left(K^{P}\right)$ is indeed a subdivision of K^{P} is sketched in (6) below. This proof will show also that Wu's and Bier's subdivisions are but two of a whole class of nice subdivisions.]

Note that any permutation π of $\{1, \ldots, p\}$ maps each nonempty set a to a nonempty set $\pi(\alpha)$, so there is a corresponding simplicial isomorphism π of $W\left(K^{P}\right)$, and the fixed points of any $\pi: W\left(K^{p}\right) \rightarrow W\left(K^{p}\right)$ form at subcomplex, viz. the subcomplex determined by the condition that $\theta_{a}=\theta$ whenever a is not fixed under π.

Thus the quotient of $\mathbf{W}\left(K^{\mathbf{P}}\right)$, by any subgroup G of such permutations, will be a simplicial triangulation of X^{p} / G.
(6) The multiplicative property seems to be basic in Van Kampen Theory because, firstly, the joins versions of all its basic constructions, K $\longmapsto \mathrm{F}(\mathrm{K})$, seem to obey this property:

$$
F(K \cdot L) \cong F(K) \cdot F(L)
$$

Secondly, recognition of multiplicativity simplifies proofs drastically:
For example, to verify that Bier's simplicial complex $\mathbf{W}\left(K^{p}\right)$ is indeed a subdivision of $K^{\mathbf{P}}$, the main thing to note is that $F(K)=K^{P}$ or $W\left(K^{p}\right)$ are both multiplicative. Note further that $K \subseteq \Sigma$, the iterated join of the vertices of K, and that $F(K) \equiv F(\Sigma)$. This reduces the verification to the case $K=\{v\}$, in which case it is easily checked that $W\left(W^{p}\right)$ is the derived complex of K^{p}, the closed simplex on the vertices $\left\{{ }^{1} v, \ldots,{ }^{p} v\right\}$.
[The above proof shows that any subdivision of \{v\} will lead to a Wu type subdivision, e.g. just deriving the top simplex of this corresponds to the original Wu triangulation of Theorem 2.]

Thirdly, and most importantly, we will see that this multiplicativity gives product formulae for Van Kampen classes, which imply ffor the case of manifolds, via Thom complexes of their tangent bundles] the Whitney addition formulae, multiplicative sequences, and other such things, of the theory of characteristic classes of manifolds.
(7) The multiplicative property also seems to drastically simplify Lee's proaf that $\operatorname{dim}\left(V_{2}\right) \leq 3$. For this the key point is to observe that any characteristic $x \in V_{2}$ satisfies

$$
x(\mathrm{~K} \cdot \mathrm{~L})=x(\mathrm{~K}) \cdot x(\mathrm{~L})
$$

and thus is determined by its value on a vertex \{v\}. But this can be subdivided no further, and $\{1,2\}$ has 3 nonempty sets, so the value of V_{2} on (v) is a 3-dimensional vector space.

Regarding the free \mathbb{Z}-madule consisting of the integral elements of V_{2}, it seems that it is generated [not by the integral bases of V_{2} given in Theorem 3 but] by the basis which computes the Euler characteristics of $\Delta(K), K_{0}^{2}$, and K_{*}^{2}.
Characteristic space V_{p} for $p \geq 3$. Bier's subdivision W (K^{P}) suggests that a resonable definition would be to to consider all "sequences" X of real numbers, indexed by integral functions λ on the set of all nonempty subsets a of $\{1, \ldots, p\}$, such that

$$
\Sigma_{\lambda}{ }^{c} \lambda_{\lambda} \cdot\left|\left\{\left(\sigma_{1}, \cdots, \sigma_{p}\right): \sigma_{i} \in K,\left|m_{i \in \alpha} \sigma_{i}\right|=\lambda(\alpha) \forall \alpha\right\}\right|,
$$

is invariant under subdivision, for all simplicial complexes K.
Once again the multiplicativity of the elements of V_{p} should quickly establish the obvious guess $\operatorname{dim}\left(V_{p}\right)=2^{p}-1$, and probably one can even display some integral basis of V_{p} coming from the Euler characteristics of some minimal invariant subsets of $W\left(K^{p}\right)$, and there might be interesting connections with results of Brown and Quillen concerning the Euler characteristics of groups and the poset of subgroups of the symmetric group on pletters ?
(8) Remarks re Smith theory of free complexes [= Wu's Chapter 2].
(i) The easiest and best way of presenting this theory would be to first work out the case of the universtal complex $E=\mathbb{Z}_{p} \cdot \mathbb{Z}_{p} \cdot \ldots$ of the group $\mathbb{Z}_{p}=\langle t\rangle$, and then reatrict to any free $\mathbb{Z}_{p}-\operatorname{subcomplex} E \in \mathbb{E}$.
E.g. $H_{d}^{k}(E)$, the group cohomology of \mathbb{Z}_{p}, is easily seen to be \mathbb{Z} in dimension $z e r o, \mathbb{Z}_{p}$ in all odd dimensions, and zero otherwise [see e.e. Brown, p.35]. Using the contractibility of \mathbf{E} this computes $H_{s}^{k}(E)$ also.
[The RS sequences are thus closely related to the 2-step periodicity of the cohomology of finite cyclic groups. For a general G there may be no such apparatus for computing the G-characteristic classes.]
(ii) Maybe $1-t \longleftrightarrow 1+t+\ldots+t^{p-1}$ is only an instance of an involution $p \longleftrightarrow \bar{\rho}[?]$ defined throughout [the subring, of elements
etarting with 1 , of the group ring of the [finite] group G, and having the property that $\operatorname{im}(p)=\operatorname{ker}(\bar{\rho})$ and $\operatorname{im}(\bar{\rho})=\operatorname{ker}(p) \operatorname{in~} C^{i}(E), i \geq 0$, for $[E=G \cdot G \cdot \ldots$ and thus for] all free G-complexes E.

At least the norm s is defined for all finite G's, so Tate's cohomoloey theory, which uses s, might be generalising some Smith theory to all G ?
(iii) If t is replaced by its conjugate t^{a} in \mathbb{Z}_{p} [i.e. a is relatively prime to the order p of t] then s is unchanged. So $H_{s}^{*}(E)$ and ${\underset{d}{*}}_{H_{d}}^{(E)}$, which are the cohomologies of $k e r(s)$ and $i m(s)$, and also the entire second RS sequence, remain the same. However $d=1-t$ gets multiplied by $1+t+\ldots+t^{a-1}$, to become $1-t^{a}$, so the morphism of the first RS sequence induced by d, as well as its connecting morphism, alter accordingly.
(iv) Smith classes of a \mathbb{Z}_{p}-complex are of order p.

Also, it seems that the reductions mod p, in the s or d cohomology, followed by the Bockstein of the d or s cohomology, coincides with the connecting homomorphisms of the RS sequences?

The connecting homomorphisms of RS sequences also coincide with cup product with the class $o^{1}(E)$.

These miscellaneous facts from Wu's Ch. 2 should become clear if viewed from the point of view of (i) as facets of the group cohomology of \mathbb{Z}_{p}.
(i券) Some remarks are in order re the quotient E/t, especially since Wu spends a whole lot of time in bringing Smith theory down to it.
(a) Even if E is a free simplicial complex, this quotient is an abstract complex only. However the quotient E "/t of the second derived of such an E is a simplicial complex.
(b) For any p, there is a cochain complex $C^{*}(E / t ; p(\mathbb{Z}))$, where $p(\mathbb{Z})$ is the subgroup of the p-fold sum $\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}$ defined by $\rho()=$.0 , whose $\boldsymbol{\theta}$ and whose isomorphism with $C_{\rho}^{*}(E ; \mathbb{Z})$ both depend on a choice of orbital representatives.
(c) However, for the case $\rho=d=1-t$, the projection map $\pi: E \rightarrow E / t$ induces a natural isomorphism $C^{\star}(E / t ; \mathbb{Z}) \rightarrow C_{d}^{*}(E)$. Even for the case $p=$ s, Wu gives a natural homomorphism $H_{s}^{*}(E ; \mathbb{Z}) \rightarrow H^{*}\left(E / t ; \mathbb{Z}_{p}\right)$.
(d) There are Smith morphisms defined in H^{*} (E) [involving reduction mod p if their length is odd] which are tied to the Smith morphisms [alternating compositions of connecting morphisms of RS sequences] of E by above maps.

ROTA

From "On the combinatorics of the Euler characteriatice" $[\because C h .4$ of "Finite Operator Calculus"]:

1. There is one and only one measure on the poset of simplicial complexes taking any given values on the closed simplices.

Here, by measure, on the poset P of all [nonempty] simplicial complexes with vertices in a given set, is meant a map x from p into some ring, which obeys

$$
x(\mathrm{~K} \cup \mathrm{~L})=x(\mathrm{~K})+x(\mathrm{~L})-x(\mathrm{~K} \cap \mathrm{~L}) \quad \forall \mathrm{K}, \mathrm{~L} \in \mathrm{P} .
$$

From the point of view of generalizing to posets other than P, note that closed simplices S are characterized order-theoretically by the property that $S=A \cup B$ implies $A=S$ or $B=S$. So e.B. the smallest member 1 of P, viz. the simplicial complex containing just the empty simplex, is an example of a closed simplex.

Proof. This follows by using

$$
\begin{aligned}
x(\text { AuBuCu ... UKUL }) & =x(\mathrm{~A})+x(\mathrm{~B})+x(\mathrm{C})+\ldots+x(\mathrm{~K})+x(\mathrm{~L}) \\
& -x(\mathrm{~A} \cap \mathrm{~B})-x(\mathrm{~A} \cap \mathrm{C})-\ldots-x(\mathrm{~K} \cap \mathrm{~L}) \\
& +x(\mathrm{~A} \cap \mathrm{~B} \cap)+\ldots \\
& \pm x(\mathrm{~A} \cap \mathrm{~B} \cap \mathrm{C} \cap \ldots \mathrm{n} \cap . . . \mathrm{K}) . \text { q.e.d. }
\end{aligned}
$$

For example the reduced Euler characteristic X is the measure whose value on 1 is 1 , and on all other closed simplices is zero, while the usual Euter characteristic is the measure which has value 0 on 1 , and the value 1 on all other closed simplices.
2. If S is any closed simplex, and μ is the Mobius function of the poset of simplicial complexes, then

$$
\mu(\mathbf{1}, \mathbf{S})=(-1)|S|
$$

So the values of the Mobius function on its closed simplices determines the reduced Euler characteristic of any simplicial complex by

$$
X(K)=\sum_{S S K} \mu(\mathbf{1}, S)
$$

Proof. For this recall that the Mobius function $\mu: P \times P \rightarrow \mathbb{Z}$ of the poset P is zero outside $\leq, 1$ on $=$, and is defined elsewhere so as to satisfy $\sum_{x \leq z \leq y} \mu(x, y)=0$. q.e.d.

Next one has the following generalization of the above, which shows that the correct order-theoretical interpretation of $(-1)^{|S|}$ comes from the reduced Euler characteristic of the poset of proper faces of S :

For any $K \in P$ one has $\mu(1, K)=-X(K$) where $X(K)$ is the reduced Euler chavacteristic [of the simplicial complex of chains] of the subposet. K_ $=\{L \in P: 1 \neq L \subset K\}$.

Its proof requires more work, but once obtained paves the way for generalizations to other posets.
3. Other posets. Being purely order-theoretical now, the above results have interesting echoes in quite different $P^{\prime} s$:
(a) If P is the poset of natural numbers under divisibility, thon the "usual Euler characteristic" of a natural number coincides with the number of distinct prime divisors of the natural number.

Likewise, for the poset P of partitions of 2 set under refinement, the Mobius function is known, so one can calculate X here also.
(b) If K is a closed q-simplex, i.e. the set of all subspaces of an n-dimensional vector space over the field \mathbb{F}_{q}, then the equation $X(K)=0$ $=\sum_{S \leq K} \mu(1, S)$ coincides with an identity of Euler and Cauchy involving Gaussian coefficients $\left[\begin{array}{l}n \\ k\end{array}\right]$, the number of k-dimensional subspaces of this vector space.

Note that now the poset P comprises all cromplexes K, i.e. aets of vector subspaces closed under \subseteq, and the apecial K's mentioned above were the "closed simplices" of this P. Regarding this P, Rota says the following:
"As $q \rightarrow 1$ (for an imaginary field with 'one' element) a q-complex becomes an ordinary simplicial complex, and a q-sphere becomes an ordinary homology sphere."

Here by q-sphere he means a closed q-simplex minus its top. [Such a fictional field of one element is dear to Manin also !J
(c) When P is the poset of faces K of a convex polytope, then \underline{K} is always apherical, which implies that one has $\mu(1, K)= \pm 1$, depending on the parity of the dimension of the face K.

Comments

(1) Rota considers the Grothendieck group obtained as the quotient, of the abelian group of all linear combinations of elements of P, by the subgroup generated by elements of the form $K+L-K U L-K m L$.

Since the coefficients of can be multiplied in the subgroup is an ideal, and

Measures of P correspond to linear maps from the Grothendieck ring to the ring of coefficients. Also, in this ring, one has the identity

$$
K_{1} \cup \ldots \cup K_{n}=1-\left(1-K_{1}\right)\left(1-K_{2}\right) \cdot \cdots\left(1-K_{n}\right),
$$

for all $K_{i} \in P$. This explains why any such functional is determined by its values on the closed simplices of P.
(2) If one wants to look only at measures on P such that $\mu(K)=\mu$ (L) whenever the simplicial complexes K and L are isomorphic, then the right Grothendieck group is of isomorphism classes of simplicial complexes.

One has the still smaller Grothendieck group of p.l. classes of simplicial complexes, and measures descending to it are as follows.

Mayer's Theorem. The only subdivision invariant measures on the poset of simplicial complexes are those which take a constant value on all closed simplices other than 1.
(3) There is another natural multiplication, that provided by the join K.L of simplicial complexes, which too descends to the above Grothendieck groups.

The reduced Euler characteristic X is the only subdivision invariant measure on P which is such that $\mathrm{X}(\mathrm{K} \cdot \mathrm{L})=\mathrm{X}(\mathrm{K}) \cdot \mathrm{X}(\mathrm{L})$ for all simplicial complexes K and L .

Finally, it seems that join multiplicativity and subdivision invariance, are of interest not only for linear, but also, a la Lee, for polynomial maps on the vector space spanned by P.

QUILLEN'S COBORDISM PAPER

The [unoriented or complex] cobordism ring is the ring of coefficients of an extraordinary cohomology theory, and its structure [i.e. the theorem of Thom or Milnor] was shown by Quillen to follow from the properties of this eeometric theory itself. [However, in the complex case, he used a homotopy-theoretically proved finiteness result. Also note for this case that all manifolds, maps, and vector bundles below will have an almost complex structure and so a preferred orientation.]
(A) Cohomology theory U^{*}. Since from the homotopy-theoretic point of view this entails no loss of generality [cf. Remark i] we will work only with smooth manifolds and smooth maps in the following :
(i) $U^{q}(X)$ will consist of all cobordism classes [f] of proper maps $f: Z$ $\rightarrow X$ of dimension - q :

Here proper means pull-backs of compact sets should be compact, dimension means dim($\left.T_{z} Z\right)-\operatorname{dim}\left(T_{f(z)} X\right)$ for any $z \in Z$, and two maps f_{0}, $f_{1}: Z_{0}, Z_{1} \rightarrow X$ are to be called cobordant if there is a map $F: W \rightarrow X \times$ [0,1], transversal to the two ends, whose restrictions to the inverse images of the two ends coincides with the given maps f_{0} and f_{1}.
(ii) $U^{q}(X)$ is equipped with addition $[f]+[f,]_{i}=\left[f \quad i \quad f^{\prime}\right]$ and multiplication $[f]+\left[f^{\prime}\right]=\Delta^{\star}\left[f \times f^{\prime}\right]$.

Here $f\left\|f^{\prime}: Z\right\| Z^{\prime} \rightarrow X$ is the disjoint sum, and $f \times f^{\prime}: Z \times Z^{\prime} \rightarrow X \times$ X the cartesian product of the maps $f: Z \rightarrow X$ and f ': $Z \rightarrow X$, while Δ^{*}; $U^{q}(X \times X) \rightarrow U^{q}(X)$ is the map induced by the diagonal $\Delta \rightarrow \Delta \times \Delta$ as follows.
[The kth cup power $[f] \longmapsto[f]^{k}$ can be seen to coincide with the map $U^{q}(X) \rightarrow U^{k q}(X)$ defined by first mapping the cobordism class [f] of any $f: Z \rightarrow X$ to the class, in $U^{k q}\left(X^{k}\right)$ eiven by the k - fold product $f^{k}: Z^{k} \rightarrow$ X^{k} of f, and then using the map induced by the kth diagonal $X \rightarrow X^{k}$ as follows.]
(iii) Each homotopy class of smooth maps $\gamma: X \rightarrow Y$ induces the functorial contravariant map $\gamma^{*}: U^{q}(Y) \rightarrow U^{q}(X), \gamma^{*}[f]=\left[\varepsilon^{*}(f)\right]$.

Here $g^{*}(f)$ [also denoted by f^{\prime} in (v) below] is the pull-back, under any member $g: X \rightarrow Y$ of the homotopy class γ which is transversal to f, of the given map $f: Z \rightarrow Y$, i.e. the projection $X \times Z \rightarrow X$ restricted to X ${ }_{X_{Y}} Z=\{(x, z): g(x)=f(z)\}$.

The above γ^{*} will also be written $⿷^{*}$ for any $£ \in \gamma$, 80 as to have the usual $g \simeq h \Rightarrow g^{\star}=h^{\star}$.

Remark 1. Thanks to this homotopy invariance we can define $f^{q}(X)$ of a simplicial complex X by embedding it rectilinearly in some euclidean space, and then replacing it with the homotopy equivalent smooth manifold which occurs as its open tubular neighbourhood. [However note that the next property (iv) is for manifolds only.]

Remark 2. Though he strongly advocates the above geometric approach, Quillen's official definition of $U^{*}(X)$ is still homotopy theoretical via Thom spectra $=$ (Thom spaces of the canonical vector bundles of the Grassmannians). He did this partly to save time, aince for apectral cohomologies it was well-known how to define the ielative cohomology $U^{*}(X, A)$ of pairs and verify the first six Eilenberg-Steenrod axioms, but also because, in the complex case, he needed the fact, which he could not prove by purely geometric means, that $U^{q}(X)$ is a finitely generated abelian group for any polyhedron X.

Remark 3. That the geometric and homotopy theoretical definitions of $U^{*}(X)$ agree is a routine generalization of a celebrated theorem of Thom. In fact Thom's theorem is the case $X=p t$, because the coefficient ming $U^{*}(\mathrm{pt})$ [or just U^{*}] of our cohomology theory obviously coincides with Thom's ring of cobordism classes of smooth manifolds.
(B) Thom isomorphisms in U^{*}. Our cohomology theory [like ordinary cohomology or K-theory] happens to also have the followine extra structure.
(iv) Each proper map $\mathrm{g}: \mathrm{Z} \rightarrow \mathrm{X}$ of manifolds of dimension -n induces the functorial covariant map $g_{\star}: U^{q}(Z) \rightarrow U^{q+n}(X), g_{\star}[f]=\left[g_{0} f\right]$ which is such that for each fibre square

one has $h^{*} \circ g_{\star}=\left(g^{\prime}\right)_{\star} \circ\left(h^{\prime}\right)^{*}$. Bestides we have $x \cdot\left(f_{\star} z\right)=f_{\star}\left(\left(f^{*} x\right) \cdot z\right)$ forall $z \in U^{q}(z)$ and $x \in U^{n+q}(X)$.
[For example the ordinary $f_{\star}: H^{n}(X) \rightarrow H^{0}(p t)=\mathbb{Z}$ of an n-manifold X evaluates cohomology classes on the fundamental n-cycle of X.]

This structure suffices to ensure that, whenever s: $X \rightarrow V$ is the zewo section of an n-dimensional vector bundle $\pi: V \rightarrow X$, then $s_{*}: U^{*}(X) \rightarrow$ $U_{C}^{\star}+n(V)$, defined again by $s_{\star}[f]=[g \circ f]$, but now with values in the compactly supported cobordism theory U_{c}^{*} of V, is an isomorphism. [To define this theory one puts the appropriate relation of cobordism on all proper maps $f: Z \rightarrow V$ whose images have compact closure, etc.]

In the late 1960 's motifs, i.e. the mostly confectural] universal cohomology functors of Grothendieck, had begun to create a atir, which soon died down, but has now returned as a storm 1 Influenced by Grothendieck's ideas, Quillen emphasized the important fact that U^{\star} is universal amongst cohomology functors possessing the above structure !!

Proposition 1. Given any cohomalogy theory $x e^{*}$ satisfying (i)-(iv). there is a unique morphism $U^{*} \rightarrow \mathscr{X}^{*}$ which preserves this structure, and $\operatorname{maps} 1=[i d] \in U^{0}(\mathrm{pt})$ to a given element $a \in X^{0}(\mathrm{pt})$.
Proof. Since $f_{\star^{\circ}}(Z \rightarrow p t)^{*}[i d]=[f]$ for any $[f] \in U^{q}(X), f: Z \rightarrow X$, it. follows that such a morphism of functors must map $[f]$ to $f_{\star} \cdot(Z \rightarrow$ $p t)^{*}(a) \in x^{q}(X)$. The result follows because one can check that this element of $\mathscr{s e q}^{q}(X)$ is independent of the representative f of the cobordism class which is used in its definition. q.e.d.
(C) Characteristic classes in U^{*}. These can be defined, for any theory obeying (i)-(iv), in the standard way [cf. books of Hirzebruch or

Milnor-Stasheff :
The Euler class $\theta(V) \in U^{n}(X)$ of an n-dimensional vector bundle $V \rightarrow X$ with zero section s is defined by $\theta(V)=\left(s^{*} \circ s_{\star}\right)(1)$.

The total Cherm class of a sum $V=L_{1} \oplus \ldots \oplus I_{b}$ of line bundles is defined by $c(V)=\left(1+e\left(L_{1}\right)\right) \cdot \ldots \cdot\left(1+e\left(L_{b}\right)\right)$. Then the splitting principle is used to extend this definition to all V 's as follows.
The Leray-Hirsch structure theorem for the cohomology U^{*} (PV) of the space of lines of V still holds because it is a consequence of (i)-(iv). We use $\pi: P V \rightarrow X$ to lift V to $\pi^{*}(V)$ which. splits. Then using this theorem its $c\left(\pi^{*}(V)\right)$ arises as π^{*} image of a unique cohomology class in X, which is the required $c(V) \in U^{*}(X)$.
This gives a functorial map $c: K^{*}(X) \rightarrow U^{*}(X)$ which obeys $c(V \oplus W)=$ $c(V) \cdot c(W)$.
[Though we won't use it, we also have the Chern character ch: $K^{*}(X) \rightarrow$ $U^{*}(X) \otimes \mathbb{Q}$, a functorial ring homomorphism, which can also be defined by this splitting method, by summing the cohomology classes exp(e(L)) as L runs over the line bundle summands L of $\left.\pi^{*}(V).\right]$
More generally, there is a functorial map $c_{t}: K^{\star}(X) \rightarrow \|^{*}(X)\left[t_{1}, t_{2}\right.$, \cdots] obeying $c_{t}(V \oplus W)=v_{t}(V) \cdot c_{t}(W)$, defined in exactly the same way by associating to each line bundle summand L of $\pi^{*}(V)$ the factor $1+t_{1} e(L)$ $+t_{2} e(L)^{2}+\ldots$.

The following observation of Novikov heralded the explicit use of formal groups in topology.

Proposition 2. There is a unique power series $F\left(T_{1}, T_{2}\right)$ in twa variables, and with coefficients in $U^{*}(p t)$, such that for any twa line bundles over any X one has

$$
e\left(L_{1} \otimes L_{2}\right)=F\left(e\left(L_{1}\right), e\left(L_{2}\right)\right)
$$

Morequer F is a commutative formal group law, i.e. it obeys.

$$
\begin{gathered}
F\left(T_{1}, T_{2}\right)=F\left(T_{2}, T_{1}\right), F(0, T)=0=F(T, 0) \text {, and } \\
E\left(T_{1}, F\left(T_{2}, T_{3}\right)\right)=F\left(F\left(T_{1}, T_{2}\right), T_{3}\right) .
\end{gathered}
$$

Proof. Since complex projective space with their canonical line bundles are universal, it suffices to compute the U^{*} of a product of such spaces
using (i)-(iv). This turns out to be the truncated polynomial ring in the two Euler classes, etc., etc. q.e.d.

For ordinary cohomology one has $F\left(T_{1}, T_{2}\right)=T_{1}+T_{2}$, while for complex K-theory it is $T_{1}+T_{2}-T_{1} T_{2}$. Mischenko, in an appendix to Novikov's paper, computed the logarithm of the formal group law of U^{*}, from which it follows easily [see Quillen's B.A.M.S. note] that the latter is the universal formal group law which had been studied before by Lazard. [However these arguments used the homotopy theoretically proved theorem of Milnor rethe structure of the coefficient ring U^{*} ($p t$).]
(D) Operations in U^{*}. The paper is based on a clever exploitation of a basic relationship between the following two operations:
Novikov character $s_{t}: U^{*}(X) \rightarrow U^{*}(X)\left[t_{1}, t_{2}, \ldots\right]$ is the functorial ring homomorphism defined by [f] $\longmapsto f_{\star}\left(c_{t}\left(\nu_{f}\right)\right)$, where $\nu_{f}=f^{\star}(T X)-T Z$ $\in K(Z)$, denotes the virtual normal bundle of the proper map $f: Z \rightarrow X$ of manifolds.
[For example if f is the constant map from an n-manifold Z, then the ordinary $s_{t}[f] \in \mathbb{Z}\left[t_{1}, t_{2}, \ldots\right]$, where $\operatorname{deg}\left(t_{j}\right)=j$, is homogenous of degree n, and its coefficients are the Chemn numbers of the manifold Z.J

In the next definition Q is any manifold on which the cyclic group \mathbb{Z}_{k} operates freely, and $B=Q / \mathbb{Z}_{k}$, e.g. we can even take $Q=\mathbb{Z}_{k}$ and $B=p t$.
kth Steenmod power $U^{q}(X) \rightarrow U^{k q}(B \times X)$ is defined by first mapping any [f], where $f: Z \rightarrow X$, to the element [id $\left.x f^{k}\right]_{e q}$ of the equivarisant cobordism $U_{e q}^{k q}\left(Q \times X^{k}\right)$, and then using the map $(i d \times \Delta)^{*}: U_{e q}^{k q}\left(Q \times X^{k}\right) \rightarrow$ $U_{e q}^{k q}(Q \times X)=U^{k q}(B \times X)$.
[Apparently for the case $Q=\mathbb{Z}_{k}$ one just gets the k th cup power ? However, when $Q=s^{2 m+1}$, with the usual \mathbb{Z}_{k} action, then one gets new stuff: note that for $" m=\infty$ " the infinite-dimensional manifold $B=Q R_{k}$ is a classifying space $B \mathbb{Z}_{k}$ of the group \mathbb{Z}_{k}.]
(E) The relationship between the above two operations is Proposition 3.17. It says [in very rough analogy with a result of wh which might be its ordinary case] that "the Leray-Hirsch components of the kth Steenrod power are the Chern numbers of the manifold". Actually there are other terms involved, so it looks more like an index rormula, and incorporates a non-trivial integrallty theorem, i.e. implies that something a priori in $U^{*}(p t) \otimes$ is in fact in $U^{*}(p t)$.
[Though Karoubi's exposition of the proof of this result is
understandable, we don't really understand the meaning of this important index formula... but we should return to it later, since the cyclic cohomology version of the aforementioned result of Wu will apparently shed new light on the topological invariance of rational Pontrjagin classes.]

The difficult [and apparently of not much interest for us] part of Quillen's paper is the deduction of the structure of U^{*} (pt) from this index formula:

First, by using the integrality result, and some computations regarding the cobordism of lens spaces, Quillen deduces that $U^{*}(p t)$ coincides with the subring generated by the coefficients of U^{\star} 's formal group law.

Then, by using a theorem of Lazard, he deduces from above Milnor's result that $U^{*}(p t)$ is a polynomial ring having one generator in each even dimension.

Comments

(1) Formal groups were defined by Bochmer in the 40 's to make some old calculations of Lie re "infinitesimal groups" more meaningful. The relationship cohomology \longleftrightarrow formal groups came to the fore implicitly in Hirzebruch's great book, and was made explicit shortly after byNovikov. After this came the above paper of Quillen, and its contemporay expositions by Adams and Karoubi.
(2) Note that the importance of another contemporary extraordinary cohomology, i.e. the K^{*} of Atiyah-Hirzebruch, also stemmed from the fact that the structure theorem re its coefficient ring, i.e. Bott periodicity, was also a deep non-trivial fact.

However its universality howerer seems to make cobordism theory much more basic, e.g. Bott periodicity may follow from the structure theorem for $U^{*}(p t)$? Also this "motivic viewpoint" suggests that the first, i.e. the cobordism-dependent, proof of the Atiyah-Singer theorem was perhaps the "right" one after all ?
(3) For developements subsequent to (1) - e.g. a characterization theorem for formal groups arising from cohomologies, study of special cases like elliptic cohomalogy, and the relationshlp of formal groups to things like binomial polynomials, functional equations, and umbral calculus - see the 1991 paper of Bukhstaber-Kholodov and its references.

WU'S "A THEORY OF IMBEDDING ... " (contd.)

CHAPTER THREE. Though very simple, this is the heart of the book, since the basic criteria for embeddability, etc. are formulated here.
A continuous mapping $f: X \rightarrow Y$ between polyhedron $\mathrm{X} \rightarrow \mathrm{s}$ called an embedding, resp. a local embedding orimmersion, if it is one-one, resp. locally one-one [i.e. each point has a neighbourhood on which f is one-one].

Theorem. If $|K|$ embeds, resp. immerses, in \mathbb{R}^{m}, then, for each prime p, there is a continuous \mathbb{Z}_{2}-map from $K_{*}^{p} \simeq W\left(K^{p}\right) \backslash \Delta K$ resp. $K_{o}^{p} \simeq N\left(W K^{p}, \Delta K\right)$ I $\Delta \mathrm{K}$, to a free \mathbb{Z}_{p}-sphere $\mathrm{s}^{\mathrm{pm}-\mathrm{m}-1}$

Proof. Clearly any embedding, resp. immersion, $X \rightarrow Y$, induces an equivariant continuous map from the complement, resp. local complement, of the diagonal ΔX of the p-fold product X of X, into that of the diagonal ΔY of the p-fold product Y^{p} of Y.

The result follows because a projection on the subspace orthogonal to the diagonal subspace $\Delta \mathbb{R}^{\mathfrak{m}}$, followed by a normalization, shows that the complement and local complement, of the diagonal of $\left(\mathbb{R}^{m}\right)^{p}$, both have the equivariant homotopy of a sphere $s^{p m-m-1}$, and the \mathbb{Z}_{p}-action is free because p is prime. q.e.d.
Conollary. If K embeds, resp. immerses, in \mathbb{R}^{m}, then the Smith classes of K_{*}^{p} resp. of K_{o}^{p} [which are images of those of K_{\star}^{p} under the map induced in equivariant cohomology by $K_{o}^{p} \simeq N\left(W K^{p}, \Delta K\right) \backslash \Delta K \subseteq W\left(K^{p}\right) \backslash \Delta K \simeq$ $\mathrm{K}_{\star}^{2} \mathrm{~J}$, must vanish in dimensions $\geq \mathrm{pm}-\mathrm{m}$

Alternating cocycles. It is important to note that the above obstructions to embeddability or immersibility, i.e. the classes of $\boldsymbol{o}^{i} \in$ $H_{d / s}^{i}\left(K_{*}^{p}\right.$ or $\left.K_{o}^{p}\right)$, are defined purely combinatorially. The case $p=2$ has been developed further as follows:

Depending on whether i is even or odd, consider the symmetric or skewsymmetric i-cochain o^{i}, which takes value 0 on any $\sigma \times \theta$, unless the vertices of σ and θ altemate with respect to the total arder, with the value being 1 , if further the least vertex of $\sigma \cup \theta$ is in the first factor σ. Then it can be verified [it suffices to check the universal example of octahedral spheres] that o^{i} is a cocycle which is in either $+o^{i}$ or $-o^{i}$, and even this sign can be worked out in terms of the congruence class of $i \bmod 8$.

Examples. Non-embeddability and non-immersibility of some complexes is now checked via above criteria, e.g. Wu reproves theVan Kampen - Flores Theorem $\left[\sigma_{n}^{2 n+2}\right.$ does not embed in $\mathbb{R}^{2 n}$, etc.] by using the above alternating cocycles.

Isotopy etc. In p.1. topology a whole gamut of such definitions have now been analysed. E.g. two embeddings are called (resp. ambient) isotopic if they are related by a 1-parameter class of embeddings (resp. self-homeomorphisms of the ambient space). [Likewise one speaks of two locally isotopic local embeddings .. .] On the other hand two embeddings are called equivalent, or in isoposition, if they are related by a single self-homeomorphism, which sometimes is required to be orientation preserving, etc.
A choice of an orientation of \mathbb{R}^{m} fixes a generator of $H^{m-1}\left(\left(\mathbb{R}^{m}\right)^{2} \backslash \Delta \mathbb{R}^{m}\right)$ $\cong H^{m-1}\left(S^{m-1}\right)$. Under an embedding, resp. immersion, of K in \mathbb{R}^{m}, this generator pulls back to a cohomology class in $H^{m-1}\left(K_{*}^{2}\right)$, resp. $H^{m-1}\left(K_{0}^{2}\right)$, which obviously does not change under isotopy [but does change sign under an orientation-reversing homeomorphism of $\left.\mathbb{R}^{m}\right]$. So these classes can be sometimes used [as Wu shows via some examples] to check that two embeddings or two immersions are not isotopic, etc.

CHAPTER FOUR. This, the messiest chapter of this messy book, gave a "new" definition of Steenwod squares, so we'll return to it after having a look at an "old" definition first.

Comments

(1) It seems that the notions of embedding, immersion, etc., can be generalized so as to view the Smith classes, of any given invariant part of $W\left(K^{P}\right)$, as suitable obstructions.
(2) Likewise it seems, e.g. by using oriented matroids other than the alternating one, that it will be able to make the definition of these classes combinatorially more explicit even for $p \geq 3$.
(3) The most challenging problem of course is to understand the limiting [or motivic or universal] case ${ }^{\mathbb{Z}_{p}} \rightarrow s^{1} n$ combinatorially, perhaps via cyclic cohomology, using the cyclic model of the group s^{1}.

STEENROD-EPSTEIN

In these [pre-1962] lectures Steenrod gave a new construction [$=$ Chapter VII] of cohomology operations which is based on some simple facts [= Chapter V] regarding equivariant cohomology.
[In this book, the integral chain complex of a cell complex K is also denoted by K, rather than $C_{\star}(K)$; however the authors prefer to use K
L. rather than just $K \times L$, to denote $\left.C_{*}(K) \otimes C_{*}(L) \cong C_{*}(K \times L).\right]$

A. Equivariant Cohomology.

Given a [possibly infinite] cell complex E and a module A, both with prescribed actions of a group G, all equivariant cochains $c \in C^{*}(E ; A)$, i.e. those satisfying $c(g, \sigma)=g . c(\sigma)$ for all $g \in G$ and $\sigma \in E$, form a sub cochain complex $C_{G}^{*}(E ; A)$, whose cohomology is denoted $h_{G}^{*}(E ; A)$.

Proposition 1. If the G-complex E is such that the faces of any cell preserved by a group element g are also preserved by g then $h_{G}^{*}(E ; A)$ is an invariant of the equivariant homotopy type of the G-space $|\mathrm{E}|$.
[Cf. first paragraph of the "Errata" of the book.]
Proof sketch.. Under the given hypothesis, $h_{G}^{*}(E ; A)$ coincides with its singular version $h_{G}^{*}(|E| ; A)$. q.e.d.

A much more restrictive notion than the above is that of a free action, i.e. one in which the conjugates $g \sigma, g \in G$, of any cell $\sigma \in E$, are palrwlse disjoint as g runs over G.

Proposition 2. For any group G, there exist free acyclic G-complexes EG, which are functorially G-homotopy equivalent to each other.
So we can denote $h_{G}{ }^{\star}(E G ; A)$ by $H^{*}(G ; A)$, and call it the cohomology of the group G with coefficients in the G-module A.

Proof. Recall that an Cacyclic> carrier S from E to F associates to each cell σ of E an (acyclic) subcomplex $S(\sigma)$ of F in such a way that σ $\subseteq \theta$ implies $S(\sigma) \subseteq S(\theta)$.

On the other hand, an equivariant (acyclic) carrier, with respect to a given G- (resp. H-) action on E (resp. F) and a group homomorphism π : G $\rightarrow H$, will be one which also satisfies $\pi(g) \cdot S(\sigma)=S(g . \sigma)$ for all $B \in G$.

For example, each (equivariant) chain map $\phi: E \rightarrow$ F gives rise to a [not necessarily acyclic] (equivariant) carrier, viz. its support supp(ϕ), which associates to each $\sigma \in E$ the subcomplex of F generated by the cells occuring [with nonzero coefficients] in the chain $\phi(\sigma)$.

If a chain map $\phi: e \rightarrow F$, from a subcomplex e of E, is supported by some known acyclic carrier S from E to F [in the sense that supp $(\phi(\sigma)) \subseteq S(\sigma)$ $\forall \sigma \in e]$ then it can be extended to a chain map $\phi: E \rightarrow F$ supported by S as follows:

One arranges the cells σ of E - in order of increasing dimension, and ϕ is defined on each of these in turn so as to satisfy $\phi \boldsymbol{\theta}=\boldsymbol{\theta} \phi$, this being possible each time because of the acyclicity of $S(\sigma)$.

A similar argument [arrange the G-orbits, which are pairwise disjoint cells, in order of increasing dimension, ...] shows likewise that if an equivariant chain map $\phi: e \rightarrow F$, from an equivariant subcomplex ef a free G-complex E, is supported by some equivariant acyclic carrier S from E to F, then it can be extended to an equivariant chain map $\phi: E \rightarrow$ F supported by S.

It follows easily from this that the required $E G$ must be unique upto G-homotopy equivalence.

As far as the exiatence of EG goes, we can [following Milnor] take EG = G.G. ... , where this infinite Join of the point set G is to be provided with the (obviously free) diagonal G-action. This complex is acyclic because any cycle, which has to lie in finitely many factors, is bounded by lits cone, which is avallable by using one more factor. q.e.d.

Continuing with general arguments of the above kind the authors partially check the fact that each G-module A determines a cohomology theory $K \longmapsto H_{G}^{*}(K ; A)=h_{G}^{*}(E G \times K ; A)$, i.e. an abelian functor satisfying the first six Eilenberg-Steenrod axioms, which will be called G-equivariant cohomology with coefficients in G-module A.
[As Borel pointed out it is useful to note that the diagonal action on the product of G-complexes is free as soon as one of the factors is free: e.g. the homotopy axiom for the above cohomology theory follows from Proposition 1 because EG $\times K$ is free. On the other hand note that the diagonal action of a join of G-complexes is free iff all of them are free.]

Furthermore, imitating the usual definition [i.e. cross product followed by the map induced in cohomology by the diagonal] they equip this cohomology with natural cup products $H_{G}^{*}(K ; A) \otimes H_{G}^{*}(K ; B) \rightarrow H_{G}^{*}(K ; A \Leftrightarrow B)$, for any G-modules A and B.

Again, just as in the ordinary case $G=1$, each short exact sequence 0 $\rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow 0$ of G -modules has an associated long exact Bockstein sequence in equivariant cohomology.

To "do sume" with thle cohomology later we need its value on a point, so the authors compute some group cohomologies $H_{G}^{*}(p t ; A)=H^{\star}(G, A)$.

Proposition 3. (a) Additively the cohomology of the cyclic prime order group \mathbb{Z}_{p} with coefficients in the trivial \mathbb{Z}_{p}-modute \mathbb{F}_{p} is given by

$$
H^{i}\left(\mathbb{Z}_{\mathrm{p}} ; \mathbb{F}_{\mathrm{p}}\right) \cong \mathbb{F}_{\mathrm{p}^{\prime}} \forall i \geq 0 .
$$

(b) Furthermore we can choose generators w_{i}, $i \geq 0$, of these groups which behave as under with respect to cup product:

$$
\text { For } p=2, w_{i}=\left(w_{1}\right)^{i}
$$

For p odd prime, $w_{2 j}=\left(w_{2}\right)^{j}$ and $w_{2 j+1}=\left(w_{2}\right)^{j} \cdot w_{1}$.
(c) Also one has $W_{2}=\beta\left(w_{1}\right)$, where β is the connecting homomorphism of the Backstein sequence of $0 \rightarrow \mathbb{F}_{\mathrm{p}} \rightarrow \mathbb{F}_{\mathrm{p}}{ }^{2} \rightarrow \mathbb{F}_{\mathrm{p}} \rightarrow 0$.
(d) The normalizer of the rotation subgroup \mathbb{Z}_{p} of the symmetric group S_{p} acts on $H^{i}\left(\mathbb{Z}_{\mathrm{p}} ; \mathbb{F}_{\mathrm{p}}\right)$ via inner automorphisms (resp. inner automorphisms multiplied by the parity of the permutation). This action is trivial iff i is an even (resp, odd) multiple of $p-1$, or one less than such a multiple.
[They obtain similar answers when p is any odd number, and surely, at least by now, the answers must be known even for any $p \in \mathbb{N}$?]

Proof sketch. The authors do the above computations combinatorially via coboundaries of an explicit \mathbb{Z}_{p}-equivariant subdivision of the unit sphere of eventually zero infinite sequences of complex numbers. q.e.d.

Finally they consider the tramsfer or integration [$=$ summation over each coset] map between the cohomology of a group and that of a subgroup of finite index. [This map goes in a direction opposite to that of the obvious functorial map, and a composition of the two maps equals multiplying by this index, etc.] Using integration they check e.g. that each cohomology class of a finite group G has a finite order which divides the order of G.
B. Cohomology Operations. The interpretation of semi-simplicial cohomology groups as homotopy groups arose from the following.

Proposition 4. Considering the module A as a chain complex nonzero only in dimension zero, one has a natural bijection from $H^{q}(K ; A)$ to the set of chain homotopy classes of chain maps $K \rightarrow A$ of degree $-q$.
[In fact we will also need the interpretations of "cochains", " cocycles", and "cohomologies" of K given in the proof below.]

Proof. By definition a cochain $u \in C^{q}(K ; A)$ identifies with a linear map $u: K\left[=C_{*}(K)\right] \rightarrow A$ of degree $-q$. Furthermore $u \in Z^{q}(K ; A)$, i.e. u is a cocycle, iff this map $u: K \rightarrow A$ vanishes on q-boundaries, i.e. iff it is a chain map of degree -q. Finally it can be checked that the difference $u-v$ of two such cocycles is in $B^{q}(K ; A), i . e . u$ and v arecohomotogous, iff there is a chain homotopy between these chain maps $u, v: K \rightarrow A$ of degree -q. q.e.d.

Definition of external powers P.

Let G be a subgroup of the group of all permutations of pletters, which will be assumed to act on the p-fold product K^{p} of any complex by permuting the factors. We choose any EG and shall use the diagonal action of G on $E G \times K^{p}$.

Given a q-cochain $u: K \rightarrow A$ of K, and any $p \geq 2$, we denote by $P u: E G x$ $K^{p} \rightarrow A^{p}$ the $p q$-cochain of $E G \times K^{p}$ obtained by composing its $p-f o l d$ tensor product $u^{p}: K^{p} \rightarrow A^{p}$ with the map $E G \times K^{p} \rightarrow K^{p}$ obtained by taking the tensor product of the augmentation $E: E G \rightarrow \mathbb{Z}$ and the identity map of K^{p}.

To ensure that $u^{p}: k^{p} \rightarrow A^{p}$ is a G-map we need to use, depending on whether $\operatorname{dim}(u)=q$ is even or odd, two different actions of G on the p-fold tensor product A^{p} : for q even we just permute the factors, while for q odd we also multiply by the parity of the permutation. These two G-modules will be denoted respectively by A_{+}^{p} and A_{-}^{p}.

With this precaution $P u$ is equivariant, and so we have a [non-linear] function

$$
\mathbf{P}: C^{q}(K ; A) \rightarrow C_{G}^{p q}\left(E G \times K^{p} ; A_{ \pm}^{p}\right) .
$$

Proposition 5. The map P images (cohomologous) cocycles to (equivariantly cohomologous) equivariant cocycles, and thus induces a [non-linear] map

$$
\text { P: } H^{q}(K ; A) \rightarrow h_{G}^{p q}\left(E G \times K^{p} ; A_{ \pm}^{p}\right) .
$$

Proof. The augmentation being a chain homotopy, it is clear that if the degree -q map $u: K \rightarrow A$ is a chain map, then the degree -pq equivariant map Pu: EG $\times K^{p} \rightarrow A_{ \pm}^{p}$ is also a chain map. Likewise [using acyclic carriers] it is easy to check that if u and v are chain homotopic, then Pu and Pvare equivariantly chain homotopic. q.e.d.

Next the authors check that these maps P comute with the maps induced by any $K \rightarrow L$ and its p-fold cartesian product. *

Also they show that if this external map \mathbf{P} is composed with the map $h_{G}^{p q}\left(E G \times K^{p} ; A_{ \pm}^{p}\right) \rightarrow h_{G}^{p q}\left(K^{p} ; A_{ \pm}^{p}\right) \rightarrow H^{p q}\left(K^{p} ; A^{P}\right)$, induced by the projection EG $\times K^{p} \rightarrow K^{p}$, then we obtain $H^{q}(K ; A) \rightarrow H^{p q}\left(K^{p} ; A^{p}\right),[u] \ddot{\mapsto}[u] \times \ldots \times$ [u], i.e. the p-fold cross product.
[And so, composing further with the diagonal induced map, one would just obtain the p-fold cup product $H^{q}(K ; A) \rightarrow H^{p q}\left(K ; A^{p}\right)$, so we'll turn to what happens if we use the diagonal first.]

Internal powers P. These are the associated [non-1inear] maps

$$
P=d^{*} \circ P: H^{q}(K ; A) \longrightarrow H_{G}^{p q}\left(K ; A_{ \pm}^{p}\right),
$$

where $d^{*}: h_{G}^{p q}\left(E G \times K^{p} ; A_{ \pm}^{p}\right) \rightarrow h_{G}^{p q}\left(E G \times K ; A_{ \pm}^{p}\right)=H_{G}^{p q}\left(K ; A_{ \pm}^{p}\right)$ is induced by the diagonal map $d: K \rightarrow K^{p}$.
[The authors avoided defining an internal P at the cochain level because there was no canonical choice of a cellular map $K \rightarrow K^{p}$ which induces d^{*} : however it seems it should be possible to repair this state of affairs by using the gier-Wu subdivision of K^{p} :]

To say more about P it is necessary to compute the equivariant cohomology $H_{G}^{p q}\left(K ; A_{ \pm}^{p}\right)$, which they do for the following case.

Case $G=$ rotation group \mathbb{Z}_{p}, p prime, and $A=F_{p}$. Now it can be checked that A_{+}^{p} and A_{-}^{p} both coincide with \mathbb{F}_{p} with the trivial \mathbb{Z}_{p}-action.

The group actions of K and F_{p} being trivial, the required cohomology
 $E \mathbb{Z}_{p} / \mathbb{Z}_{p}$ has of course the same cohomology as the group \mathbb{Z}_{p}. So, by using Kunneth's theorem, which applies since we have field coefficients,

$$
H_{\mathbb{Z}_{p}}^{*}\left(K ; \mathbb{F}_{p}\right)=H^{*}\left(\mathbb{Z}_{p} ; \mathbb{F}_{p}\right) \otimes H^{*}\left(K ; F_{p}\right)
$$

So we can define the Kunneth components $P_{k}: H^{q}\left(K_{i} ; F_{p}\right) \rightarrow H^{p q-k}\left(K ; F_{p}\right)$ of the internal cyclic powers $P: H^{q}(K ; A) \longrightarrow H_{p}^{p q}\left(K ; F_{p}\right)$ by

$$
\mathrm{Pu}=\Sigma_{\mathrm{k}} \mathrm{w}_{\mathrm{k}} \times \mathrm{P}_{\mathrm{k}} \mathrm{u},
$$

where the w_{k} are as in Proposition 3.
For the case $p=2$, we now define the Steemmod squares $S q^{i}: H^{q}\left(K ; F_{2}\right) \rightarrow$ $H^{q+i}\left(K ; F_{2}\right)$ by

$$
S q^{i} u=P_{q-i} u
$$

And, for p an odd prime, the steenrod reduced powers $p^{i}: H^{q}\left(K ; F_{p}\right) \rightarrow$ $H^{q+2 i(p-1)}\left(K ; F_{p}\right)$ are defined by

$$
p^{i} u=\left(a_{p, q}\right)^{-1} \cdot p_{(q-2 i)}(p-1)^{u},
$$

where the significance of the normalizing constant $a_{p, q}$ will be clear from (d) of the following.

Proposition 6. (a) Cyclic powers $P: H^{q}(K ; A) \longrightarrow H_{p}^{p q}\left(K ; F_{p}\right)$ are linear.
(b) Furthermore, their components $P_{k}: H^{q}\left(K ; \mathbb{F}_{p}\right) \rightarrow H^{p q-k}\left(K_{;} ; F_{p}\right)$ are, for q even (resp. odd), zero unless k is an even (resp. odd) multiple of $p-1$, or one less than such a multiple.
(c) If $\mathrm{p}=2$, then we have the cross product rule

$$
P_{k}(u \times v)=\sum_{i+j=k} P_{i} u \times P_{j} v,
$$

while for an odd prime p one has

$$
P_{2 k}(u \times v)= \pm \Sigma_{i+j=k} P_{2 i} u \times P_{2 j} v,
$$

where the sign equals the parity of $\left[\begin{array}{l}p \\ 2\end{array}\right] \cdot \operatorname{dim}(u) \cdot \operatorname{dim}(v)$.
(d) The p_{k} s vanish atso if k exceeds $\mathrm{q}(\mathrm{p}-1)$, and $\mathrm{p}_{\mathrm{q}}(\mathrm{p}-1): \mathrm{H}^{\mathrm{q}}\left(\mathrm{K} ; \mathbb{F}_{\mathrm{p}}\right) \rightarrow$ $H^{q}\left(K_{;} ; \mathbb{F}_{p}\right)$ is multiplication by a nonzero constant $a_{p, q} \in \mathbb{F}_{p}$.

Proof sketch. (a) One checks that d^{*} vanishes on the image of the map

$$
H^{p q}\left(E Z_{p} \times K^{p} ; \mathbb{F}_{p}\right) \longrightarrow h_{p}^{p q}\left(E \mathbb{Z}_{p} \times K^{p} ; \mathbb{F}_{p}\right)
$$

induced by integration. Then it is verified that, if u and v are q-cocycles, then $P(u+v)-P(u)-P(v)$, which by definition is essentially $(u+v)^{p}-u^{p}-v^{p}$, lies in the image of this map. So $P=d^{*} P$ is linear.
[Q. Find all subgroups of the symmetric group S_{p} for which this works.]
(b) Consider the functorial maps from the internal powers of the normalizer of \mathbb{Z}_{p} in S_{p} to the internal cyclic powers. Now use the fact that actions via inner automorphisms are trivial for the normalizer's powers, while for the cyclic powers they have, by Proposition $3(\mathrm{~d})$, trivial components only for the stated values of k.
(c) For any group G of permutations of p letters, if one applies to $\mathbf{P u} \times$ $P v$ the map induced by the diagonal group homomorphism $G \rightarrow G \times G$, then one gets $P(u \times v)$ upto the above sign, because this is the change in orientation resulting from the shuffle $K^{p} \times L^{p} \leftrightarrow(K \times L)^{p}$.

For the case of the rotation subgroup one obtains the required rules for
the components of the internal cyclic power because, for the case of an odd prime, we know from Proposition $3(b)$ that $w_{a} \cdot w_{b}$ is zero when a and b are both odd.
(d) But for the fact that the constant $a_{p, q}$ is nonzero, the rest will follow by repeatedly using the fact that powers are functorial in K:

First note that homomorphisms induced in cohomology by the inclusion of its q-skeleton are monomorphism in dimensions $\leq q$, so, for a q-dimensional class $u,{ }^{\prime}{ }_{k} u$ will be zero in K iff it is $z e r o$ in its q-skeleton K^{q}.

Now find a map from K^{q} to s^{q}, which pulls back the dual fundamental class of this oriented q-sphere to u. So, by functoriality again, it suffices to consider the case when K is an oriented S^{q} and u is its dual fundamental class, the required $a p, q$ can be found by computing the homomorphism $\mathrm{P}_{\mathrm{q}(\mathrm{p}-1)}$ of $\mathrm{H}^{\mathrm{q}}\left(\mathrm{S}_{;}^{\mathrm{q}} ; \mathbb{F}_{\mathrm{p}}\right)=\mathbb{F}_{\mathrm{p}}[\mathrm{u}]$. This computation, which shows that it is nonzero, is sketched later.

As far as the vanishing assertion goes, it can be in doubt only for $P_{q p}$: $H^{q}\left(S^{q} ; \mathbb{F}_{p}\right) \rightarrow H^{0}\left(S^{q} ; \mathbb{F}_{p}\right)$, which must be zero since it commutes with homomorphisms induced by the inclusion $\{\mathrm{pt}) \subseteq S^{q}$.

Computation of $a_{p, q}=a_{p}$:
An application of the product rule to $K \times s^{1}$ gives $a_{q}= \pm a_{q-1} \cdot a_{1}$, the sign being the parity of $\left[\begin{array}{l}p \\ 2\end{array}\right] \cdot\left[\begin{array}{l}q \\ 2\end{array}\right]$.
So it only remains to compute a_{1}, i.e. the homomorphism $P_{p-1}: H^{1}\left(S_{;}^{1} ;{ }_{p}\right)$ $\rightarrow H^{1}\left(S^{1} ; F_{p}\right)$ of an oriented circle. This [which incredibly is the hardest part of the whole proof !] is done combinatorially via coboundaries starting from the subdivision of the circle into two arcs. It turns out that $a_{1} \in \mathbb{F}_{p}$ equals -1 . q.e.d.
Proposition 7. (a) The Steenrod squares $S q^{i}: H^{q}\left(K_{;} F_{2}\right) \rightarrow H^{q+i}\left(K ; F_{2}\right)$ are natural transformations obeying $S q^{0}=i d, S q^{q} u=u^{2}, S q^{i} u=0$ for $i>q$ and $S q(x, y)=S q(x) \cdot S q(y)$, where $S q=\Sigma_{i} S q^{i}$.
(b) For any odd prime p, the Steenrod reduced powers $p^{i}: H^{q}\left(K_{;} F_{p}\right) \rightarrow$ $H^{q+2 i(p-1)}\left(K_{i} F_{p}\right)$ are natural transformations obeying $p^{0}=i d p^{q / 2} u=$ $u^{p}, \mathcal{P}_{u}=0$ for $i>q / 2$, and $\mathcal{P}(x, y)=\mathcal{P}(x) \cdot \mathcal{P}(y)$, where $p=\Sigma_{i} \mathcal{p}^{i}$.
Proof. Follows easily from Proposition 6, and the definitions of Sq^{i}
and p^{i}. q.e.d.
The "axioms" listed above [the product rule is called Cartan's formula], not only imply the remaining "axioms" [Bockstein behaviour/Adem's relations], but also are enough to uniquely determine these cohomology operations: for this see Chapter VIII of the book. The rest of the book is based solely on these "axioms".

Comments

(1) In his 1947 Annals paper Steenrod had defined squares using cup i-products. The definition discussed above, which ties them up nicely with the cohomology of the finite rotation groups, seems to be a new version of that given in his 1953 Commentari paper.

Previously, in their 1936 Annals paper, Richardson and Smith had computed the cyclically equivariant homolosy of pth powers of complexes. The definition of the dual [or inverse] Smith operations $S^{i}{ }^{i}, \mathrm{Sme} \mathrm{Sq}=$ id, appeared implicitly in their calculation, as was pointed out later in Wu's 1965 book.

Following Milnor, operations are also interpreted as the action of a known Hopf algebra [generated by symbols subject to relations suggested by Adem's formula, and equipped with the co-multiplication suggested by Cartan's formula] on cohomology. Analogously, following Seme and Cartan, they can be interpreted also as a homotopy-theoretic action of the cohomology of an Eilenberg-Maclane space on cohomology.

Amongst the striking applications of operations are the ones of Thom [embeddings, topological invariance of Stiefel-Whitney classes], and those of Adams [vector field and Hopf invariant problems] who used other operations also.
(2) The definition of operations given in Wu's book is very close to that discussed here. The only difference being that instead of associating to K the equivariant complex $E G \times K^{p}$ [G being say the cyclic permutation group on p letters] he works with K^{p} [and its subcomplex K_{k}^{p} and subdivision $W\left(K^{p}\right)$] itself. Again the operations are obtained by an "equivariant localization" of pth powers of cocycles to the diagonal.
(3) One can replace products by joins in these definitions. For example though K. .. F.G.G. ..., unlike its sub cell complex $\mathrm{K}^{\text {P }} \times$ EG, is not free, its G-action still satisfies the requirement of Proposition 1 , and it has the same diagonal as the aforementioned sub cell complex.

This should enable us to use join multiplicativity to shorten some proofs [say the computation of the $a_{p, q}$'s ?] and should [using e.g. the fact that EG $=$ G.G. .. is a deleted join] enable us to put Steenrod's and Wu's definitions in a single framework.
(4) It would be interesting to generalize this combinatorial theory to
the infinite abelian group of circular rotations. The methods of cyclic cohomology suggest that this is now possible, and it would be interesting to do it, because it might lead to a conceptual combinatorial definition of rational Pontrjagin classes, etc.
(5) Also one should generalize this theory to some other finite, but non-abelian, permutation groups. This should be possible, because starting with say Cartan-Ellenberg's 1956 book [Chapter 12], a mass of information is available about group cohomology, the essential ingredient in the above method.

This should also relate to computations of cohomologies, and equivariant localizations of ph powers of cocycles, for invariant parts of $W\left(K^{p}\right)$ other than the diagonal.

