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LT) = ﬁ+ with sum 1, and to each order preserving map n — m the 1linear
map |n| — |m| prescribed by it. Composing it with the functor which
associatea to each space the set of all continuoug maps from it to a
 fixed space ¥, we get the singular complex S(X) of X. 5o SUX), = all

_ continuous maps from [n| teo X.

B The linear cowmplex L(T) of a siwplicial complex T has ]& = all

‘linear maps from closed n-simplex [D,1, .. ,n] to T = all sequences of
length n+l supported on simplices of T. [This simple constructioan has
been largely ignored: e,g. after defining it in 1.4, May never returns
to it again: the preferred congtruction is the following.] !

6. The ovdered cowmplex K(T), of a simplicial complex T with vert(T)
ordered, has Kn = _a!.:‘.l. increaging sequences of length n supported on

"

-SImpllces ot 1.

1£ T = closed simplex on (0,1, .. ,n) then K(T) will be written & and

called the standard n-simplex. So (4, ) = all monotone maps (0,1, ..
yB) — (0,3, .: ,t}. Note that any order preserving map (0,1, .. ,f) —
(0,2, .. ,8) determines a simplicial map A, — A between the

corresponding standard simplices.

A simgle but dmportant goint s thoat each n-stmplex of anv simglicial
ab ject K determines, and iz determined by, a simplicial map An — X

For example it is this [see p.14 onwards of May] which lidentifies the
definition of homotopy groups, gliven in 10 below, with Lhe more obvious
definltion, using the homotopy of slmpliclal maps of 12. '

T N

7. The sequence of all but the kth face, i.e. the kih Schlegel diagoam

"E-E_lﬂ'-'- . g c?k_l, ﬂk*l' o P Hﬂ) = (@uo“_, it ,Jk_lcr, ak.*-i'j‘ N - &nq_}. of a

simplex & = Ku' n = 2, obeys the compatibility conditions '
diaj. = 35-15’1 ¥V i < j other than k.

K is called a Kan complex if, conversely, any sequence Bos. frs Bpunty

.8 from K

-k+1_!- - - " anJ n"'l-.
canditions, ls the the kth Schlegel diagram of sode o & Kn.

n = 2, which obeys these compatibility

8. Propositlon. Singular comglexes S(X) are Kan complexes.

The above, which is obviouws, 1s the basis on whlich Kan generalized
clasasical homotopy theory to hls conblnatorial-lhomotopy theory [see 14].

[If the simplicial complex T is full, them L(T) and K(T) are also Kan
complexes, But this is unimportant because these complexes are rigid: a
slmplex is determined by its =sequasnce of faces: and so thelir
homotopy groups — see 10 — are trivial.]

LR | :}

.




‘[Note alse that, 1im a singular complex, a gequence of n+l
(n-1)-simplices (c':‘ ot an_,. satisfying the necessary "compatibility

ditions”, is salddm a stmplicisl boundary | j..e_;‘ the sequence @0-5.
Cvewe e @) Of all faces of an n-simplex o: in fact the glven sequence

determlnu a continuous map of the (n-1)-sphere into K and this map
would have to be trivial for such a ¢ to exist.]

9 Proposition Simplicial groups are Kan complexes. [(17.1)]

The above, which Is not quite obvious, is due to Moore, and enabled him
to giva some unexpected applications [ses 16] o©f Lthe combinaterial
homotopy theory of Kan complexes. -

10. Two n- gimplices, ,n = 1, which have the same sequence of faces are
called homotoplc simplices if they are the two last faces of an
(n+i)-slmplex, whose other faces are obtained from the corresponding
faces of either of the twe simplices by applying the last degeneracy
operator. '

Proposition. For Kan complexesx homatapy of simplices s an eguivalence
relation.

The same Is true for "homotopy rel subcomplex"™ etc. The various
homotopy groups are defined as these egquivalence classes; 2.§. L (= Ay

n = 1, are the homotopy classes of n-simplices with all faces in the
subcomplex generated by the base point 1, The Dth group Ty (X,1) is

. defined az the equivalence classes of D-gimplices lying in the same psth
component., i.e. those which can be connected by a train of l-gimplices.

41. The product of complexes K and L is the complex B B for which
(F,-tB)n = 1’-9:--13.n with el_i(x,y) = £ai:c.¢9iy) and e (x,¥) = -(25.; x5 vl.

[Applied to example & thls glves the standard triangulation — see
Eilenberg-Steemnrod — of the product of two gsimplices: quite pogsibly it
was this which motivated tlie definition of simpliclal objects ?]

There .i.s also a more general notion of twisted cartesian product [ =
combinatorial fibre bundile] F %, B, with prescribed twisting function +
mapping each Bn to Gn g
left action on the fibre F, ... [see (18.3) for this definition, & 1%
flrat para and (20.5) to see equivalence with another definition.]

X [= Hom(K,L)] has (I..KJn = "pn-parametar

12, The function complex L
fanmilieg of simplicial maps from K to L” = simplicial maps K &n =3 B
while the face and degeneracy maps uge the maps between A and A qeBony
[see (6.4)]. 1-simplices of LK are also called homotopies of simplicial
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~ [Shuffle permutations — see pp.17-18 > enter into a more explicit
’&&acrlptlon of the n-glmplices of the functlon complex; they enter again
ofi p.123 in definition of a homotopy inverse of thediexander—Whiney map
used to define cup products.] ’

Homotopy of two n-simplicea [see 11] corresponds to the homotopy rel
boundary subcomplex of the associated simplicial maps from A :

1%. A Kan complex is called a wminimal complex [ff two simplices having
the same kth Schlegel diagram have the same kth face. 'This is
equivalent to demanding that homotofic simplices be same.

FProposition. Every Kan m}m;:!ex has as sStrong defaormation retroact a
miintnal complex which s unigue upto isomorphism. [C3S 5 69831

-
Thie construction of Ellenberg-Zilber proceéeeds inductively on dimension,
choosing one representative, degenerate whenever possible, from each
homotopy claes of simplices.

Are minimal complexes related to the crystallizations of Caviechilli et
al. [and maybe even to self-dual simplicial complexes] ?

i4, Combinatorial homolopy theoary mimics classical homotapyv theory of
CW complexes:

First, generalizing definition of 7 from complexes to simplicial maps,
one obtains the analogue of the Serre fibration, now called a Kan
fibhration [likewise generalizing definition of 13 glves a miniwal
fibration: sach Kan flibration has an essentially unique minimal
fibratlon to which it is equivalent]. Standard things like couvsring
homotopy  gropecty, hometopy extension propayiv, exact seguence of
fibration, etc., extend easily to this setting, a bonus being the
following canonical Pestnikouv factorization of a Kan complex [and an
analogous one of a Xan flbration].

Proposition Gluven any Kan complex K ilet K(n) be the guotienl obtained
by tdentifving simplices which [considered as maps from ot ‘tim.d&;“sl
simplex] coincide in dimensions = n The guotisnt maps K( 13

are Kan fbrotions whose fiber has anly one non-trivial homotopy group,
the oth, which coitncides with the nth homotopy group of K. [(8.7)]

Sueh Kan complexes with only one homotopy group are called
Ellenberg-Maclane complexes: in case they areYalso minimal they are
called K(n,n)'s [see also 16 below].

15. Realization Is a covariant functor from simpllcial sets to topological
‘apaces, [KJ. being defined as explalined before by, using obvious
identifications on Un(!{n = [af2.

Propositior. |K| iz a CW complex with one cell for each nen—desenerate
Simgle . (¥ « L| is homecmorphic to |K| < |[L] whenever it is a OW
cannprlan Ugpto homotopy the siwngular functor = the adjoint of this
reglizsation functor. [€14.1),014.3),616]
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The above iz due to Milnor and Kan. Leaving aside the exact meaning of
the last phrase, it implies [(16.6),(16.7)] $

ad nncx), of any CW complex X, colncides with r:n(]S-(X)! ), and

by ﬂn(K). ocf any Kan comnl'ux ¥, coincides with n-n(5§K| Y. [We com thus
use this ta define n '(Kj suen when K s not Kanl ]

Also |K(T)| = 1] bdt | LCTY] has'mora cella: but maybe.| L(T) has
‘always the same homotopy type as [‘I‘] - '

16. Az mentioned before it (s the combinatorial homotopy theory of
aimplicial groups whidh threw up zome really new stuff:

. Propasgition. The lhomotogy grouvps of any stmplictal group 6 cotnetde with
the homology groups of the chain complex N(G) obtained by using the last
face wmap on the kernel of all the other face maps. Also, G is minimal
iff this chain complex is trivial. ie has homolagy N(G). [517:
(17.3), ¢17.53]

The above is due to Moore, who also obtalined, for the abelian case, fthe
following Dold-Thom theorem showing that homology groups constitute a
special case of homotopy groups:

. Proposition The homotopy groups of any abelian simplicial group G
cotncide with its homology groups under the alternating sum of the face
maps [with above N(G) being now a quotient of this chain complex] Thus
the hemology groups [see 3]of any sitmplicial set K coincides with the
hometopy groups of C(K). [(22.1),(22.3),022,6)]

Then Dold and Kan showed that the earlier work of Eilenberg-Maclane fits
into this setting as follows:

Propositiomn There is an explicii and stmple funcior T from chain
complexes to simpliciol abelian groups [defined by fattenning up each
dimension to account for degeneracles, etc.] which is adjesint to the
" above functer N. [pp.95-96 for I', (22.4)]

Thi=z implies that the mipimal Ellenberg-Naclane complexes K(n,n)'s arise
imply by applving T to the chuain complex having zafro euvervewherse except
‘a n at level n { [(23.7)]

17. Loop group G(K) of a complex K las a simplicial group having [for
the "peduced case"” when K has only one vertex] '_GD(K) 5. {free group
generated by all (n+l)-simplices of K)/(normal subgroup generated by the
images of the first degeneracy map), ete. [(26.3)]

Proposition. The principal fiber bundle G(XK) “ K with the cbuicus
twisting functien 7: K — Gn(i{). has a contractible realisation. The

n+l
homoiopy groups of Kan complex K are the homoltopy sroups, of one less
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dimenszion, of G(X). dlss the homolosy gmnp.s- af K are the homctopy
groups, of one less dimension, of the abelianization ' AK(X) of G(K)
Ip-121] %

.-l..nop o lid G (X). Thia varliant is made just like G(K) except one useés
free monoids instead of groups: for reduced Kan complexes one hovever
- Still gets G(K). [(27.8,27.%)). This may be close to deleted joins ?

Loop complex L(K). This variant is defined by mim;cklng the Serre
- fbration: f(irst one defines a path complex P(K) whose (K) = all

(n*lY-simplicea of K, and dropp;ng "the first face and dege:mra.cy maps. d
[So this is preciaelv what figures in the odd columns of the Tsygam |
double complex |] The complex [not simplicial group] L(K) is the fibre
of the fibration P(K) — K given by the first face map. [(23.2)]

~
Classifying complex U(G). This is adjoint of the functor G(K). W(G)
has %Tn_(ﬁ) = cartesian product of the groups GU' <5 '-Gn' ete. The

realizatlon of U(G) is contractible, and W(G) comes with an action of G:
80 W(G)/G serves to claseify bundles having group G. [£21: p.87, etec.]

Suspension E(K). This is adjoint of the fundtor L(K). One has 'E,', (K3 =

all ordered pairs (i,x) where x Is an (n-1)-simplex of K, etc, The
reallzation of E(K) is homeomorphic to the reduced suspension of the
realization of XK. THe adjointnesas corresponds to the topological fact
- that homotopy classes of maps from ¥ to the loop space of Y are in 1-1
correspondence with homotopy classes of maps from the suspension of X
Iito Y.  [(27.10),(27.6)]

[The definitions above are due to various people: Ellenberg and Maclane,
Milnor, Kan, Moore, etc.]

18, The remaeining && 28-32 of May are aimed at establishing the maln
properties of the Serre spectral seguence. To calculate the second terw
" he proves a theorem (31.7) of Brown giving an equivalerice between 3'-(!“3:*

L) and A(X) @ A(L), i.e. between twisted cartesian products and twisted

tensor products [this generalizes the untwisted case (29.3) which was
. the theorem of Eilenbhenz-Ziiber], ‘The proof requires the method of
acyclic models (5§28) which furnishes the reguired homotopies, though a
couple of expliclt maps (29.7) of "Alexand er-UhJ.t_:_nay_ and
"Ellenberg-Maclane” also occur, The above equivalence also furnlishes a
construction of cup productl, Ponlr jagin product [for a G-complex], and
cap product which occur in & 30. '

84

LN



CARTAN 195657

These papers of Cartan are also on "simplicial topology” A& la Ellenberg:
exposé 1 was a talk which gave, besides a few new results, an extremely
nice account of Kan’s simplicial homotopy theory ([it was based on
announcements/preprints of Kan, and lectures of Moore and Milnorx ], and
its sequels [= exposés 3 and 4] established more new results:

1. Simplicial categories. Given any category ¥ there is the associated

p :
category € of contravariant functors from A.

Alternatively, each object K of g® consists of a sequence l(n, nz 0, of

objects of ¥, together with n+l face maps di from Kn to K and a like

n-1"

number of degeneracy maps 8 obeying the wusual

i from I(n to Kn+1 .
commutation laws. And, a morphism f:K —» L in ® consists of a sequence

of maps Kn - Ln commutling with the d.'s and si's.

i

2. Howolopy groupis. Cartan recalls Kan's definition of the extension
condition, but refers to Moore's lectures for the definition of homotopy
groups of Kan complexes, and to Moore’s Expost 18 of 1954/55 [p.18-04
and §4) for the following.

Proposition. Simplicial groups G are always Kan, and their homotopy
groups ﬂn(G) coincide with the homology groups Hn(N(G)) of the chain
complex (N(G),do). where N(G) = kernel of all face maps other than the
first, dO'
Using this he checks that these ﬂn(G) are always abelian for all n = 1.
Then he turns to the case when the simplicial group G is abelian.

Proposgition. For a simplicial abelian grougp G, (N(G),du) is a wub chuin

complex of (G,d), where d = allernating sum of the face wmaps, and the
inclusion N(G) — G induces an isomarphizm in homology.

For this Cartan considers the fTiltratiorn of sub chai;‘: complexes,

G = FD = I-‘:l 1 S
where, for p = n, (Fp) = kernel of all face maps othsr” than % G
'dn-p‘ and for p > n, (F )n = kernel of all face maps other than do. He

then checks that each inclusion Fpil -3 Fp induces an isomorphism in
homology.

[This proposition and/or its proof might 1lead to a conceptual
understanding of Kalal ' 'theorem: exterior shifting preserves homology 7]
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The homology group nn(x) of simplicial set K is by definition the
homology of the free simplicial abelian group C(K) generated by K. So
we get from the above, ¢

H (K) =n_ (C(K)).

[Dividing C(K) out by the subgroup generated by the subcomplex of K
generated by a base point one gets the reduced version.)
The homotopy group nn(x) of a space X is defined to be that of its

singular complex S(X). The above result of Moore was motivated by the
earlier one of Dold-Thom which we should learn more about: the homology
groups of a space identify with the homoltopy groups of its "symmetric
product' .

3. Realizations. For any simplicial set K, Milnor considered |K|, the
quotient of the digjoint union

U |x] : xe K, nZz0)

of affine simplices |[x|, under the obvious identifications, and showed:

It dis reasonable, for- any K, to de fine nn(l() to be the homalopy geoup
nn(lK|J of this realization |K| :

More precisely, he showed that, when K is Kan, the above definition
colncidea with Kan's because of the following.

Proposition. For any K resp. any K which is Kan, the monomorphism,

K — S(|K|), x & Kn — (|x|: An — | K|,

induces an isomorphism of homolopy, resp. homotopy, groups.

In case x = l(n is non-degenerate, the aforementioned singular simplices
|x| are homeomorphisms restricted to the interior of An: this is the

key point in checking that |K| is o CW complex, with one cell for eoch
nan doegonerate simplex of K

ey

Furthermore, In case the Kn‘s consliat of all non-dec¢reasing sequences of
verticea supported on the simplices of an ardered simplicial comglex
then |K| coincides with this simplicial complex.

[So, contrary to a remark in previous review, such a K is not Kan :
otherwise its trivial homotopy would coincide with that of |K]|.
Likewise the "linear complexes” are also not Kan.)

[In Eilenberg-Stecmnrod, p.68, it was checked that if K end L arica nc
abiove from bwo orderod stmplictal compleves, then :K ¥ Ll cerine tdes with
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the cartewian product of the two astnpliclal complexes: this useful
"product rule”— which incidentally can be generalized a lot — might
well have been the small beginning of Eilenberg’as great work 7]

Propogition. The realization |G| of a countable simplicial group G is a
topological group.

This follows because the simplicial map G x G — G consisting of the
group multiplications Gn = Gn —_— Gn' induces a continuous map |G *® G| —

|G| of realizations, and the two simplicial projections define a
continuous bijection |G x G| — |G| % |G|, whoge inverse is continuous

at least when G is countable. [Likewise the "generalized product rule”
also requires some hypothesis to ensure continuity of the lnverse.]
4. Fibrations, These are maps E - P 3 Blaatiafying Kan’'s condition:

this generalizes the definition of a Kan complex which is the case B =

{pt). More generally, the fibres F = p-I(b) of a fibration are always
Kan. However, in general E or B need not be Kan, but it so happens Lhat
the total space E e Kan iff the base spoce B is Koan,

X — Y i a Serre fibration iff the singular S(X) - S(Y) its a Kan
fibr-ation :this easy but important observation might well have been the
starting point of Kan's work ?

Also, if E -» B is a Kan fibration, then its realization | E] —> |q A
though not quite a Serre fibration [see May: p.65], is still good enough
to have the usual exact homotopy seguence of o fibration: thus [using
definition of 3] a fibration E -» B has an exact homotopy sequence even
when E and B are not Kan.

Propos=ition. 7§ G is a simplicial group with a prescribed " free action"
G x E — E, then the guotient map p: E — E/G satisfies Kan's condition.

The special case E = G ila Moore's result that simplicial groups are Kan,
and the proof of the above generalization uvses this apecial case

All fibrations [see exposé 4, Prop.1], so in particular above prinacipal
bundles, always admit @ pscudazcction @ whiclh  comunatas wath - all

di‘t‘f!}'“"'f'n' N mrpse, and alsoe with all J‘“‘ ) WIS e '.f" do.

Using such a pseudosection p one has a bijection of E with G x B. Under
thiasa bijection, the face and degeneracy maps of E identify with the
usual face and degeneracy maps of a product, except do, which Iinstead of
being (x,y) += (dox.doy) is (x,¥y) v+ (duxwy.doy). where the twisling

funclion 1:Bn -» G is determined by, and determines, p . The net

n-1
upshot: principal fibwre bwundles colncide with twisited cartesian products
G x_ B

T

5. Loop groups. Thia construction of Kan associates to each simplicial
set K a free simplicial group G(K) with Gn(K) = free group on the
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(n+l)-zimplices of K except thoze lying in the itmage of 85 - Its di. 's
's are [on elements x determined by simplices x] the :&+1 s and
1

and si

8 's of K, except that dox is (dlx)(dox)-

i+1

Proposition. The formula nn(G(K)) = ﬂn+1(K) holds for any K having only
one vertex.

This important result of Kan [who “also has a version which dispenses
with the last condition] prescribes a combinatorial way of calculating
homaotopy groups of any simplicial set K.

To prove the above it is checked that the principal fibre bundle G(K) X
K, where the twisting function is the quotient Kn —3 Gn-l (K), is
contractible, and then one uses the exact homotopy sequence of this
fibration.

6. Abalianized loop group. Denote G(K)/[G(K),G(K)] by A(K): so An (K)
is Cn+1(K) divided out by the image of BD'

this division is unimportant homologically and homeology of A(K) eguals
homology of K in one higher dimansion,

However it turns out that

7. Noncomusmalalive chains. Kan's definition of G(K) was preceded by one
of Milnor, which simply associated, to each K, the simplicial group F(K)
with Fn(l() = free group on the msingplices aof K [or its reduced

verasion], the di'a and si’n being, on elements determined by simplices
of K, simply the di's and si’s o el &4 Thus F(K) is simply the
noncommutative version of C(K), which is its abelianization.

Proposition. nn(F(K )) is dsomorphic to the (n+l)th homotopy group of
the suspension of |K|.

The suspension theorem of Freudenthal shows that the last named group is
often [not always] the nth homotopy group of K: thus Milnor's result
sort of shows that homotopy groups are "noncommutative analogues” of
homology groupa.

Milnor’s construction was subsumed in Kan's bf defining a simplicial
analogue of suspension, and showing that F(K) was the loop group of the
the suspension of K.

8. Kan got some abstract Hurwicz-type theorems, e.g. the following.
Proposition. Let F be any fres simplicial group and A itls

abeltanization. If the homotopy groups of F are trivial below dimension
n,.nz 1, then nn(F) - -y ﬂn(A) i an isomorpliice.

Q. Universal principal simplicial G-bundles. For any simplicial group
G this is the principal simplicial G-bundle W(G) for which
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Un(G)=anG R e ¥ G

n-1 ¢
the face maps di are given by
e e O LR S L P TP PSSR e R L R L
and the degeneracy maps s, are defined by
oy e A o R e o it T O LR o M L L LW E R L

The free action of Gn ‘on Un(G) is on its first factor, thus the nth

object of W(G)/G is Gn—l W e, % Gu. and mapping any of its elements
(xn—l' ,xD) to (ln’xn—l' ,xo) gives the cancnmical pseudasection of
this bundle. The key property of W(G) is that its realization is
contractible.

The above definition is essentially Eilenberg-Maclane's, but Cartan
refers to the 1954/55 exposts 12 and 13 of Moore [explicit formulae
above are on p.13-06], and gives a resumé on pp.07-08 of his exposé& 4,

Cartan's exposés 3 and 4 give the delicate proofs [e.g. regarding the
"Kan-neass” of Hom(K,L)] which are necessary to develop, one by one, the
simplicial analogues of some well known facls of homotopy theory [e.g
that an isomorphism class of principal simplicial G-bundles over B’,
pulls back, under a homotopy class of simplicial maps B— B, to an
igomorphism class of principal simplicial G-bumdles over B] and thus
establish the following clasasificaticn (theor owm of principal stapliclual
G-bundiles .

Proposition. A principal simplicial G-bundle on B, together with a
peeudosection, deltermines, and is determined by, a simplicial map from B
into W(G)/G. This seils up a bijection between isomorphism classes of
principal simplicial G-bundles on B, and homotopy classes of sitmplicial
maps B — W(G)/G.

'Aa usual the pull-back of the cohomology of W(G)/G gives the
characteristic classes of the principal G-bundle over B.

THEORIES COHOMOLOGIQUES

Cartan [in Invent. 35, 1976] develops further Swali's note re Thom 's
definition of a de Rham cohamniney frr simplicial complexeas

1. Some standard algebraic terms:

Module = an abelian group M, equipped with a "compatible” sgacalar
multiplication of some commutative ring R with unity = vector space if R
is a field.
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Graded module = module M in which a direct sum decompogition M = zn Hn
into submodules indexed by the non-negative integers n is aspecified.
Differential graded module = graded module equipped with linear maps &:
oy BT Lich that Se8 = 0. 1te cohomology H(M) = (kers)/Cims) l# &
graded module with H'(M) = (ker &: M™ — M™'1y/cim 5: W®71 o w®).

Algebra = module M equipped with a "compatible” product.

Graded algebra = an algebra which is a graded module with product

imaging each M? x l‘lb'lnto 1**®.  Note that HU. is an algebra, while M,

for n = 1, are only modules.

Differential graded algebra = graded algebra M which is a graded
differential module with the differential & obeying the usual signed
product rule. Its cohomology H(M) is a graded algebra, so BD(H) is an
algebra.

2. Each of the above notions has of course a simplicinal narcion | o.g.
we have simplicial diffoarcabiol goadod algebhras Al
By this we mean that, for each p= 0, we have a DGA [= differential

graded algebral Ap =% N A:, and the face and degeneracy maps di: Ap —

_ n n
Ap-l and si. AP -3 Ap”_ are DGA morphisms. Setting A =3 A", where A

.3 An. we will also consider the simplicial DGA A as an ordinuacy [=
P P

non-simplicial] DGA. Note that [the components A: of] the I{' 's

constitute =simplicial modules, with AO being even a simplicial algebra .
Note also that the cohomology H(A) is a simplicial graded algebra , so

HO(A) is a simplicial algebra.
3. Given a simplicial set K, and a simplicial object A of the above

kind, we put A(K) = mel of all simplicial maps from K Lo A, with
algebraic astructure induced from the ordinary strdcture of A.

E.g., if K is a simplicial set K and A is a simplicial DGA, then the
ordinary DGA A(K) = all simplicial maps from K to the simplicial set A,
with the DGA structure induced by that of the DGA A. Thus A(K) =

r_nn"(x). wvhere An(K) = all simplicial maps from K to the simplicial set

An. with the module structure being the one induced from the module i

2. Homologically tLrivial simplicial DGM. By this is meant not only
that the cohomology of the cochain complex

0 & & n & n+l &

A — .., —— A —— A e T
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of simplicial modules is zero in all positive dimensions, but also that

the zeroth cohomology HO(A) = ZD(A) is simplicially trivial, i.e. all
the face and degeneracy maps of this simplicial module are isomorphisms:
using this we will identify it with the module R(A) constituting its 0th
object.

When A is a simplicial DGA then of course HO(A) is a eimplicial algebra
and R(A) is an algebra.

Homotopically trivial simplicial DGM -A By this is meant that all the
homotopy groups, of each of the simplicial modules An, n = 0, are zero.
3. Theorem A, In case the simplicial differential graded module A is
homologically and hogpotopically trivial, the contravariaont functor- which

assoctates to each stmplicial set K the graded module H(A(K) ) coincides
with the usual cohomology of K with crnaffiriante in the modul= R(A).

Cartan establishes this by a beautiful application of simplicial
homotlopy thoeoy

Proaf. We have HU(A(K)) = 2™(A(X))/B"(A(K)), where Z"(A(K)) = module of
n-cocycles of A(K) = simplicial maps from K to i‘(A). the simplicial
module of all n-cocycles of A, and Bn(h(l()) = module of n-coboundaries
of A(CK) = simplicial maps from K to i‘(h) whose image is in g (A) =
6(An_1), i.e. those which can be lifted over the fibiulicu S :f_l 3
z" ()

Now, using the covering homotopy property of &6, it follows that any
homotopically trivial gimplicial map from K to Zn(A) can be thus lifted.
Conversaely, s8since An—j is homotopically trivial, any such 1liftable

simplicial map from K to Zn(h) is homotopically trivial. Thus we have
seen that - %
H (A(CK)) = [K,Z2°(A)],

i.e. that the nth cohomology of A(K) identifies with the simplicial
homotopy classes of simplicial maps from K to Zn(A).

We now use the fact that the usual nth cohomology "af K with coefficients
in R(A), identifies naturally with the set of simplicial homotopy
classes of simplicial maps from K to an Eilenberg-Maclane complex , whose

sole homotopy group is the nth, and equals R(A). So to complete the
proof it suffices to check T

nl(z“(n)) =0 if i # n, and nn(z“(A)) = R(A).

For this note, because of the homological triviality of A, that the
fiber of the fibration &: A ¥ — PP eA)-is ZX T fA). So ths required

91



result follows by an induction on n by using .theexact homotopy seguence
of this fibration. g.ed.

4, Ordered cochains. We have the simplicial differential graded module
C for which Cp = all ordered cochains of standard psimplex Ap with

coefficients in ring R. Thus associated ordinary differential graded
module = direct sum over p = 0 of all these cochain complexes. Note
that R(C) = R.

Proposition The simplicial DGM C 4i& homologically and homotopically
tr-iuvial. ;

S0 Theorem A applies to C: in fact the usual cohomology of K with
coefficients in R is ysually defined as cohomology of C(K). Also note
that when K corresponds to an ordered simplicial complex, then C(K) is
the ordered cochain complex of K.

Products in C There is the obvious one: juxtaposition: but this is not
well behaved with respect to the grading by dimensions: it is however
well behaved with respect to the grading by degrees [= cardinalities]:
and the differential obeys a product rule with respect to this: however
it seema [proof 7] that the induced product in cohomology H(C(K)) is
trivial.

A less obvious product is that introduced by Adlexander, Kolomogrou,
Whitn=y et al. : this is well behaved with respect to dimension grading
and obeys the product rule too: 80 with thig C becomes a simplicial
differential graded algebra: the induced cup product in cohomology is
non-trivial, and H(C(K)) ies [unlike DGA C(K)] also graded-commutative.

B. Smooth formes. This is the simplicial DGA ©2 for which Qp = gdes Fhoonr '8
DGA of smooth forms on the standard p-simplex Ap [i.e. equipped with the
exterior product and differential s extoric: Jdifferenticotion ], Note
that the ordinary DGA 2 is graded-commutative and that R§x) = [k . For

this 2 one has n: = 0 for n bigger than p [0 Theorem B below applies].

Proposition. The simplicial DGA 0 is homologically and homotopically
trivial.

Thue to each simplicial set K [e.g. the one corresponding to an ordered
simplicial complex, or the singular complex of a space] the cohomology
of Thom's graded commutative DGA Q(K) yields the ordinary real
cohomology of K. In fact [using Theorems B and C below] the two
cohomology algebras are also same.

Rational fosxuws. This variant of the above, due-to Quillerns , Sullivan , et
al., uses Qp = all forms over Ap which, in barycentric coordinates, have

rational polynomial coeffliclenta. Everything sald above still works.

6. Integration For the case of forms, Stokes’ formula provides a
homomorphism [non-multiplicative] between the de Rham complex and the
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simplicial cochain complex which induces the iabmorphism of Theorem A.
Even thia Integration map has an intereasting algebraical generalization.

Theorem R Let A be a homologically trivial simplicial differential
graded module for- which A;: = 0 whencuor n > p Then there exists onc

and only one morphism from A, inlo the simplicial differential graded
Imodule C of ordered cochains of standard simplices with coefficients in

R(A), which iz the identity on ZD(A)-

Proof. By induction on n. Assume a unique extension upto level n-1,
and into n-cocycles has been done. But this map Zn(A) — = Zn(C) must
| have a unique extension to a map An —— Cn. becausge Aﬁ = (Zn(h))n
because of A2+1 = 0. By homological triviality A"/Z%a) = Z2*1(a), so

we have a unique extension upto level n and into (n+l)-cocycles. ged.

Remark. This "integration” induces a homomorphism H(A(CK)) — H(C(X))
for any simplicial set. If A is also homotopically trivial the left
side is isomorphic to the right by the previous theorem. Presumably now
this homomorphism in cohomology is an isomorphism [maybe it follows from
uniqueness above ?] but Cartan forgets to say it explicitly !

7. Theorem C. Let A and B be homelogically and homotopically trivial
simplicial di f ferential £graded algebras. Then any simplicial
differential graded module homomorphism A — B which is an algebra
homomorphism of R(A) inte R(B), tnduces, for all simplicial sets K a
eraded algebra homomor-phiam H(A(K)) — H(B(K)).

Proof. Continuing the simplicial homotopy theory of £3, what we need to
do ia to check that the following diagram, where the vertical arrows are
defined by the given homomorphism, is commutative upto simplicial
homotopy.

2% % ZP(A) ————s 2% Piay

| ' l J

2% 2 ZP0R) ———s Z* KB

For this it suffices to check that the diagrams obtained by applying any
"i to above diagram commute. But the two cartesian products on the left

are themselves Eilenberg-Maclane complexes, their only nonzero homotopy
group being in dimensions a+b, this being R(A) % R(A) and R(B) x R(B).
So the required commutativity follows from the hypothegis that the given
morphism is an algebra morphism of R(A) into R(B). g.e.d.

We remark that, apparently, the very last "followa” of the above
argument is not true in general: this because Cartan inserts another

condition in the statement — that the modules Zn(A) and f‘(B) be flat
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[?] over the ring R -— for this very step of the proof. However
flatness is true if R = field or 2 or free abelian groups, etc., 8o this
gap is not too important. ;

Comments

(1) How exactly does justaposition give rise to the Alexander and the
higher products ?

(2) Consider for each p = 0 the exterior algebra Ap = over the p+1l
vertices (0,1, .. ,p) of Ap o_aquipbed with the differential &(w) = (sum

of vertices) A . The simplicial DGM A [the product does not make it a
DGA] gives, for an ordered simplicial complex K, A(K) = oriented cochain
comgzlex of K. .

(3) How does A(K) relate to Thom’s 02(K) ? In particular how does above
exterior product of A relate to that of O ?

(4) Formulate Kalai's shifting process functorially in the above
setting: starting from any simplicial algebra A : one would have to
work out the changed grading etc.?

(5) Integral cohomology ring can not be computed from a
graded-commutative DGA. [Why?] However Grothendieck [sgsee £& 6,7 of
Cartan's paper] gives such a simplicial graded-commutative which does
vield the integral cohomology module, and also some additional data is
set down whose knowledge prescribes the cup product structure. Similar
results were found also by Miller .

(6) When K is a smooth triangulation of a smooth manifold M, then it
seems {2(K) coincides with the classical {i(M) of E.Cartan and de Rham.

(7) Instead of thinking of A(K) as all simplicial maps from K to A we
can also think of it as all simplicial maps from the chain group of K to
A. To consider homology theories we should, instead of A(K) look at the
tensor product of this chain group with A.

Eilenberg-Zilber

Following is a brief section-by-section account of this 1950 A4dnnals
classic:

€1> Discarding the requirement that simplices be uniquely determined by
their faces, the authors generalize the notion of an ordered simplicial
simplicial complex to a memi-simplicial complex, i.e. only face maps
used. They point out that all of (co)homology, e.g. Alexander formula
and cup i-products make sense for this generalization,

L&A Also local coefficientss cohomology fits in very nicely: now to
each vertex is associated a group, and to each edge is associated a
group isomorphism, these being subject to the cocycle condition: the
appropriate (co)chains now pair simplices with elements of group based
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on their leading vertex: the 0th face operator gets twisted: otherwise
the coboundary formula is the usual one.

{3 Now they turn to the chief motivation of their study: the singular
simplices of a space. When a base point is specified they introduce the
sub semi-simplicial complexes for which singular simplicial faces of
dimension below an n are all on base point

4> Next they define the notion of homotopic simplices for singular
simplices having same faces. They define the notion of a minimal
semi-simplicial subcomplex of the singular complex. They show how to
get one, and also that, if the homotopy groups vanish till some n, that
it lies in the subcomplex of (3).

{5 A chain homotopy [approx. acyclic models] is constructed.

6> Using above it is shown that minimal éouplexea have the same
(co)homology. Another application is that if lower homotopy vanishes
the subcomplexes of (3) carry all (co)homology.

7> Now, for space connected, the minimal semi-simplicial complex is
shown to be unique upto simplicial isomorphism.

(8> At this point they note that in fact all order preserving maps acts
on singular complexes, and they define complete s=zemi-zimplicial
complexes .

9> Parallel to this they now define minimal complete semi-zimplicial
complexes and construct these iteratively also.

€10> The last section proves, by an explicit algorithm in which the now
well known commutation rules re face and degeneracy maps are freely
used, that normalization, i.e. the process of dividing out by the
degenerate gsimplices does not effect (co)homology, with local
coefficients, of a complete gsemi-simplicial complex.

Conunents
(1) The analogy of minimal complexes to shifting is uncanny: from an X
we go to S(X) within which we find this M(X) whose realization still has
the homotopy type of X ...
(2) Re (8) one may ask if, analogously, had E-Z been studying the
example of the linear complex of a simplicial complex, and seen that «ll
maps [n] — [m] act on it, would they have from this introduced the
notion of a cveclic object ?

(3) The algorithm of (10) should bear on Bier's theorem.

ACYCLIC MODELS

The original papers of Eilenberg-Maclane/Zilber, in Amer.J. of 1953, are
much smoother to read than Spander [who gives a weaker version] or May.
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€AY A covariant functor K: € — &, where the category & is abelian, is
said to be representable by a subset M of Obj€ ), if there is some
natural transformation which lifis it to the associated functor KH: € —

# having
Ky(a) = <(u,x):p = Hom(m,a),x € K(m),me M> , K (a 25 b) = (atep,x),
over the natural transformation,
KH(a) — K(a) = {((p,x) + » K(p)(x)), a = Obj(¥€).

Any such 1lifting K(ay - Kn(a), a € 0Obj(¥), is said to be a
representation of K by the model objects m = M.

(B> Theorem 1. let K and L be twe functors from € to the calegory & of
chain complexes, such that K is representable by a set of model objects
of ¥ whose homology under L is trivial. Then there is a natural

trans formation f:K(a) — L(a), a = 0bj(8), which is unigue upto chain
homotopy.

Proof. Note that each natural transformation f: K(a) — L(a) has the
asgsociated natural transformation f :Kn(a.) — L(a) obtained by

M

composing it with the functor KH(a) — K(a), and that conversely, by
composing any natural transformation K“(a) — L(a) with a representation
K(a) — KH(a) of K over the models M one obtains a natural
transformation K(a) — L(a).

Similar remarks apply to partially defined natural transformations f: &
— &, i.e. natural homomorphisms f: l(p(a) e Lp(a.). a  0bjE),
commuting with the boundariea &, for all , defined for dimensions p less
than some n.

Given such a partially defined f, we choose, for each model object m,
and x € Kn(m). a z € Ln(m) which bounds the cycle (f:& )(x) = l"n-l (m).

Using this the associated partially defined natural transformation
extends to the nth dimension by letting fu: KH n(a)n——» Ln(a) be the map

(e,x) — L(u)(2).

The above argument, which used the vanishing of the (n-1)h homology of
the models under L, serves as the nth step of our inductive «construction
of the required natural transformation f: K(a) — L(a).

A gimilar upward induction on dimension, whose nth step now uses the
vanishing of the nth homology of the models under L, suffices to
construct a chain homotopy H: !g_l (a) — Ln+1 (a), &« H + K& = £ - h,

between any two given natural transformations f,g: Kn(a) —3 Ln(a).

g€l
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Eilenberg-Maclane also give vartante of this result, for partially
defined natural trangformations and c¢hain homotopies between them, which
are obvious once one keeps track of which homology’'s vanishing is
required at which astep in the above proof.

<G Cubical singular homology. The main application of the above
theorem given in this paper is that Serre’'s cubical singular homology
coincides with the usual singular homology.

To define this one has singular n-ci.lhes of a space X, i.e. continuous
functions dr(xl. g ,xn). of n real variables satisfying 0 = x o =1

taking their values in X. A singular n-cube has 2n (n-1)-dimensional
facea: for each i, 1*= i £ n, there is the t.‘ront ith face cr(:& i

'x1—1'°'“i' e ,xn), and the back ith face a(xl. o * 'xi-i’l'xl' e .xh).

The cubical singular complex n(X) of a space is the free abelian group
on its singular n-cubes which is equipped with the boundary @8 given by
taking the alternating sum over i of the differences (front ith face -
back ith face).

The homology of the cubical singvlor complex (L(X),d8) is not the usual
columalaogy of a point

In fact for X = (pt.}, o(X) has one singular n-cube, for each n = 0, and
above & vanishes, giving homology = & in all dimensions.

A singular n-cube o is degenerate if there is some i, 1 = 1 = n, and a
singular (n-1)-cube & gsuch that d‘(x1. o ,xn) = 6(::1. . ,xi_l,x1+1, ot
.xn). These determine a subcomplex of o(X). The quotient complex m(X)
is called the mormalized cubical singular complex of X.

Theorem 2. The homology of the normalised cubical singular complex
(m(X),?) coincides with the usual singular cohomology of X

This follows from the acyclic models theorem by using the non-degenerate

singular cubes as the models. Their acyclicity under m is easily
checked [after an augmentation]. The usual singular simplices are of
course continuous functions a(xo. i .an. of n+l non-negative real

varibles having sum 1, having values in X. The =implicial singular
complex A(X) is the free abelian group on these equipped with the
boundary & which is the alternating sum of the faces, there being just
one ith face, viz. d(xo, 5% '*i—1'°'x1' i .xn). The singular simplices

serve as the acyclic models of A(X).
For the simplicial case too there is a smaller mormalized simplicial

ginsuvlar complex [by dividing out by the degenerate simplices & which
arise from a simplex & of one lower dimension as o(xo. s .xi +x1+1, s

,xn)} which too gives the same homology. But, unlike the cubical case,

now normalization is only optional.
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(41 b We now go to another application, given in a paper which

! immediately followa the above paper in the same journal.

Eilenberg-2Zilber Theoren 1y K and L are any two simplicial abelian
groups, then their cartesian product K x L and tensor product K @ L
considered as functors into the category of chain complexes, are
homotopy eguivalent.

It is interesting that in this note [which is before Kan 's work] E-Z
quite clearly think of a complete  semi-simplicial complex as a
contravariant funcior, and having defined the gq-simplices of K x L as
all ordered pairs (o,82), where o is a q-gimplices of K, and & a
q-simplex of L, make any monotone a act on these by a(os,8) =
(a(c),a(@)). The product K x L becomes a chain complex by equipping it
with boundary & equal té6 the alternating sum of @he faces.

On the other hand K @ L is the graded abelian group whose gth summand is
freely generated by the synbols - ® 8, where ¢ is an r-simplex of K, and
8 is an sg-simplex of L, with r and 8 such that q = r+s. And the

boundary @ is defined by d(c @ @) = d(o) @ & + (-1)F o & a(o).

To prove the above result they use ¥ = category whose objects are
ordered pairs (K,L) of simplicial complexes. The two products are then
checked to have as acyclic models all pairs of [ordered complexes
supported on pairs of] standard simplices.

Explicit eguivalences are given, in one direction by the recipe of
Alexander-Kolomogrov-Whitney , and in the other by that of
Eilenberg-Maclane [involving shuffle transformations]: for the latter
gee their papers on K(n,n)’'s and May.

The Eilenberg-Zilber Theorem gives very qguick definitions of the
products in (codhomology:

E.g. in conjunction with the diagonal map K -+ K x K one at once gets
the cup product in cohomology H(K) @ H(K) — H(K) [originally defined
by using the explicit cochain map of A-K-W.] And, in conjunction with a
given ([simplicial] group action G x F — F, it at once gives the
Pontr jagin product H(G) ® H(F) — H(F) in homology. [Thus, for the case
F = G one gets, in cohomology H(G), besides the cup product,the
conultiplicalion which makes it into a Hopfl algebia.] For more see e.g.
May who also treats the cap product . B

Comments

(1) It should be very interesting to work out an analogue of
the Filenbierg Zitber thoorem with joine uwilead of producte.”

O0f course this would entail finding the right definitions, and here the
Wu triangulations of joins should help. A result of above type would
explain, without messing around with explicit (co)chain formulae, how
the cup, and all other cup-i products, arise all together [as 'Hirzch
components”] of the juxtaposition product [explaining why Pontrjagin
classes are "Hirsch components” of the wvan Kampen -WUu obstruction
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classes].

£2) Brown [see May, or original & in Annals of 1959] established a
generalized Ellenberg-Zilber Lheorem giving homotopy equivalence between
a twisted cartesian product, and a twisted tensor product of two
simplicial groups: this gives another proof re nature of the second term
of the Serre spectral seguence of a fibration [which incidentally is
‘where singular cubes firat arose].

‘'(3) In the above paper of Eilenberg-Zilber they alsc have a result re
the linear complexes [of all sequences of vertices supported on the
‘gimplices] of simplicial complexes . [No total ordering of the vertices
' is involved]. The cartesian product of these is called the simplicial
| product. of simplicial complexes: the E-Z theorem identifies the homology
lof simplicial products with that of the product space (same ex. is on
- p.359 of Spanier). ;

29
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SERRE’S EXPOSE
From Sem. Cartun 1954/55, exposé 1:
(A> Eilenberg’'s isomorphism There is a natural isomorphism
H'(X;n) = [X,K(n,n)],

where X is any CWcomplex, and K@ ,n) denotes one whose sole non-trivial
group is the nth, being isomorphic to n. . -

Such a K(n,n) is called an Eilenheré—Maclam spade ,

Proof. Note that K(n,n) has trivial integral homology below dimension
n, while its nth homology group is . So its nth ‘cohomology group with
coefficients n is given by

Hn(K(n.n),n) = Hom(m,m).
Let the fundamental class in Hn(K(n,n),n) be the one corresponding to

the identity map 7« — n. Each continuous map f: X — K(m,n) pulls this
back to a class of Hn(x;n).

The map [X,K(n,n)] — n“(x;n) thus obtained was checked to be an
disomorphism by means of an [obstruction theoretic] upward induction on
the skeletons of the complexes. g.ed.

Some examplea of Eilenberg spaces:

Bhie rp@e.1), Xrun) »x KGw,n) & K(r x w.n) e.g. T = k@l 1), mP =

‘K(IZ,IJ, and more generally for any discrete group G one has BG
K(G,1), € = K(Z,2).

2> The importance of Eilenberg-Maclane spaces is clear once one notes
that cohomology operations, i.e. natural maps n“(x;n) = [X,K@ ,n)]}—>
[X,K(w,p)] = HP(X;\V). are [all of them?] determined by elements of

[K(m,n),K(y,p)] = HP(K(ﬂ.n);w) [for more see Eilenberg-Maclane's H(m,n)
papers and Serre.]

Their (co)homology Hp(l((n.n);w) and Hp(l((n,n);v) are denoted Hp(n.nau)
and Hp(ﬂ.n;w) by Eilenberg-Maclane because of the following.

Theorem. For ecach abeoelian n and n = 1, there is, uplo hu:m.-lu;:y type, a
unigue K(m,n).

Proof. A CUWU cell complex which is a K(m,n) can be constructed by using
an inductive argument going back to VWhitehead,

The uniqueness is a consequence of the isomorphism of (1): let X also
have only the nth homotopy group non-trivial and equal to m : 8o
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[X,K(n,n)] = Hn(ll;ﬂ) = Hou(ﬂn(X).ﬂ) = Hom@ ;1 ): the map X — K@ ,n)

_corresponding to the identity map m — n induces an isomorphism of

homotopy groups, and thus is a homotopy equivalence.
g.ed.

The Eilenberg-Maclane groups Hp(ﬂ yNy) generalize Hopl'ss notion of
cohomology Hp(n;\u) of a group n with coefficients yp, which corresponds

to the case n = 1: Hp(n,l;w) = Hp(ﬂ:iv)- This follows because the
quotient of a contractible space under a free action of a diacrete group

En is a K(n,1).

In fact Serre’s calculations of these more general groups starts from
the case n = 1, and usges an induction on n based .on the following:

There is a contractibla fibre spoce with fiber K(n,n-1) and baose K@ ,n),
namely the space of all pathsg of K(n,n): thus K(n,n-1) is the loop space
of K(n,n).

Note also that loop composition gives a group operation also in the
homolagy groups Hp(ﬂ ,n;:;@) which is associative and anticommutative.

€8> Postnikov towars [also found independently by Zilher] give a way of
constructing a space having a given sequence of homotopy groups “1' nz,

“3' ... «. One starts with an Xl = K(nl.l) and builds over it a fibration
having K(nz.2) ags fibre: it turns out that these are classified by an

invariant k3 = H3(X1;ﬂ2). And then, over the total space % of this
fibration, another fibration with K(ﬂ3.3) as fibre, determined by an

invariant ]c.4 b= H‘(Xz;nz), and so on.

Theorem Each space has the homotopy type of a unigue Postnikov tower,
so ils homotopy groups and Posinikov inuariants characterize its
homotopy type.

Generalizing the idea of c¢cochomology operations Maszey and Adecm
congldered some conditionally defined "secondary” operations which are
clagsgified by some special Posgtnikov towers.

Comments

€19 Exposé 20 of same year is also by Serre and deals with homotopy
operations [in possibly many variables] of G Whitehead etc., and
Hilton's theorem regarding homotopy groups of bouquets of spheres.

It is curious that the cohomology groups of Eilenberg-Maclane spaces,
which are spaces with just one non-trivial homotopy group, are
responaible for cohomology operations, while the homotopy groups of
spheres, which are spaces with just one non-trivial cohomology group,
are responsible for homotopy operations.
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Cohomology operations Hp(x;n) » Hq(x;v) ) n’(x;a) of two variables

(2)
are determined by maps K@ ,p) x K@®.,q) —

[possibly all of them?]
K(g,8), which constitute HB(K(ﬂ.p) x K(w,q):;®), which' can be calculated
by using the Kunneth formula.

upto homotopy type, each map can

or a fibration: using mapping

(3) Serre also shows in first § how,
Such constructions are

be replaced by either an inclusion
cyclinders or path/loop spaces respectively.
basic for proofs of homotopy theory.
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SET THEORY

Halmos's book, Naive Set Theory, which is written in the usual informal
[but formalizable] language of mathematics, gives all that one usually
needa from thias body of facts:

1) Lettera [usually roman small, capital, or script] will denote =ets,
an undefined notion [like e.g. "point” in geometry] and x <= A will be
read as: x belongs to A, or, x is an element of A: and assumed to have
the following property.

Axiom of extension Seis A and B are same iff x =« A& x< B

This sameneass or equality of A and B will be denoted A = B, while
inclusion A= B [or that A is a subsxel. of B] will mean that only x € A »
x €« B holds. Thus above axiom says: A = B iff A S B and B < A, which of
coursge is the common way of checking the coincidence of sets.

€22 An equally common way of defining new sets is the following.

Axiom of specificalionn. If A is a set then, for each condition S5S(x),
there is a set B £ A which consists precisely of those elements x of A
for which the concitiom S(x) is true

This set B is also denoted by (x < A : S(x)). Note that the axiom of

extension shows that this set is uniquely determined by A and the given
condition.

More preclsgely the above condition S(x) is a sentence, built up from the

atomic sentences of the type A = B and x<= A, by using the logical
connectives and, or, nNnt, -, ¥ 3 |, with at least one occurence of x
free, i.e. nol preceded by V or 3.

We use A # B for not(A = B), x # A for not(x « A), etc.
Theosrem For any A, one has y = {(x ¢« A: x & x) &« A

Froof. 1f we had y € A, then y & y implies y € y while y= y implies y
& y. ged.

Thus the existence of a "universe”, i.e. "a set containing all sets”,
leads to a contradiction, which is called RussellVs paradox.

Remark. Such unsels [like a "universe”: also see (20) and (25)] are
called "classes” in the treatment of set theory given in Kelley 's
appendix. However class and collection are more frequently used simply
as synonymg for set.

Though in general {(x: S(x)} will have no meaning, we will consider it as
equivalent to {(x = A: S(x)) when the condition 5(x) implies x = A. In
this case we’ll say that the set {x: S(x)} is well-defined.

€3> The next axiom ensures in particular that there is a set.
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| Axiom of pairing. There existls a set A which has given sets u and v as
. elements.

. 0f course such an A may have other elements also, but its subset (x < A:
| X = u or x = v}, has precisely u and v. This set, which is uniquely
. determined by u and v, is denoted {u,v}, and called an unordered pair.

If v = u, the pair {(u,u) is also written {u} and called a singleton.

Take any set A [it exists by virtue of the above]. Its subset {x « A: x
# x) is called the empty mel @ [because it has no elements]: the
uniqueness of ©® follows from the axiom of extension.

{43 Given a nonempiy set ¥ of sets, the intersedtion of the member sets
of € ia defined by using the axiom of specification to cut down any one
of them to the subset whose elements lie in all of them: by the axiom
of extension this set is uniquely determined by €: it is denoted by n €,
n {(X: X = €), nxég X etc., with A n B being the preferred notation when

€ = (A,B).

Axiom of unions. JGiven any sel € of sels there exists another which
contains all their elements.

Again, by using the axiom of specification, we can cut down to the
subset containing just these elements, and, by the axiom of extension
this wndon of the member sels of €, is uniquely determined by €.

The parallel notations for the union of the member sets of a collection
£ of sets are U €, U (X: Xe #), U X, AU B, etc.

Xe®
Since {(a,b) = {(a) U (b), we generalize the notion of unordered pairs to
usordered triples, etc., by defining {(a,b,c) = (a) U (b) U (c), etc.

[there is no need to put extra parantheses on the right because of the
easily checked "associativity" of unions].

5> Before writing down the next axiom we note that we already have
enough tools in hand to do the usual algebra of sets: distributivity of
union [intersection] over intersections [unions], de Morgan's laws
regarding complements A — B = {x =& A: x &« B) [also denoted B’ in case A
is understood), Hoolean addition AAB = (A-B)U(B-A)], etc.

Axiom of powers. Given any set X there eaexists another which has all
subsgsets of ¥ as its elements.

The power met #(X) will be the unique set whose elementils ;re precisely
all the subsets of X.

6> Ordered pailrs are defined, somewhat surprisingly, by (a,b) =
{(a),{a,b}}, the justification being the following.

Theorem. {13 (a,b) = (u,v) if and only if a = uand b = v
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€i1ld» The cartesian product A ¥ B = (x: x = (u,v), ue A, v e
B) is a well-de fined set.

€iii> If R 45 a relation, ite a set whose elements are
ordered pairs, then

dom(R) = {(a: 3 b a.t. (a,b) € R) an? ran(R) = (b: 3 a s.t. (a,b) € R)
are well de fined sets, and R € dom(R) x ran(R).
Proof. (i) needs a straightforward verification.

(ii) follows from the definition of ordered pair, which shows
that the condition x = (u,v), u= A, v B implies that x belongs to
the set 2(FA U B)). .

(iii) follows again from this definition because it implies that
any a [resp. b] such that (a,b) = R for some b [resp. (a,b) « R for some
a] belongs to the set UU R. g.ed.

C7-10) Besides the usual facts pertaining to [compositions etc. of]
relationa, the following notions are important.

A partition ¥ of a set X is a sget of subsets whose pairwise
intersectionsg are empty, and whose union is X. Correspondingly we have
the equivalence relation R £ X % X consisting of all (u,v) such that u
and v belong to the same member of #%.

Another important kind of relation, called a function, and denoted f: A
-3 B, or x 5 f(x), x € A, is a subset f € A x B with dom(f) = A and
such that for each a € A, there is a unique b & B such that (a,b) € f.
Sometimes this unique b ig denoted ba' and it is convenient to think of

the function f as a family {ba} indexed by the members a of A. ¢ I i s
A, then f|C will denote the restriction of the function f: A -— B to C.

Given any family {Ba}. a « A, of sets, we can then look at the set of
all families (ba}' a = A, with ba = Ba for all a. This set is called
the cartesian product of the family (Ba} of sets, and is denoted by
xaeA(Ba)' or HMA(Ba). etc. When A is an otde::‘ad pair this notion
identifies in an obvious way with the A x B of (6).

Associated to each function f: A — B there is an induced function f:
#P(A) — P(B) which associates to each subset of A its image in B under

f, and also an induced function f-l. P(B) -+ P (A) which associates to

each subset of B its preimage in A under f. The latter commutes with
unions, intersections, and relative complements, while the former
commiites in general only with unions.

(11> The =BuCccessOT x+ of a set x is defined by x+ = x U {(x). The empty
set O is also called =zero, its successor is called one, and one’'s
guccegsgor la called two, and two's three, and so on. UWe adopt the usual
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notation 0, 1, 2, 3, ..., for these natural numbers ,

Axiom of infinity. There exists a set A such that ©.= A and for which x
€ A s x e A holds.

The above axiom implies that there is a set @ consisling precisely of
all natural numbers, and that « is the smallest set of the kind
mentioned in the axiom.

Families {ba}' a « n, having as indexing set some natural number n, are
called finite mequences, while families {ba}. a « w, indexed by the set
« of all natural numbers are called mequences.

€12 The fact that w:is the smallest set obeying the axiom of infinity
has the following immediate but important consequence.

Principle of mathematical induction. If a subset S of o satisfies 0 =
S, and nes-yn+es.then S = w

Proofs using thie fact are called inductive proofs.

For example to prove that o is a transitive mel |, ji.e. that x & y e w
implies x € w, it obviously satisfies to show that all natural numbers
are transitive sets, and this follows by noting that the set S of all
transitive natural numbers obeys the above requirements and so coincides
with w.

It can be checked that the above hypotheses "0 = § and n € S = n+ e 5
are equivalent to "n € S & n < 8", [Anticipating the definition of
order of natural numbers given in (13) this says "if all numbers less
than n are in S, then so is S"”: it is this reformulation of induction
which i1a generalized in (17) to all well ordered sels.]

The following result [whose proof also uses induction] is the basis of
all inductive [= recursive] definitions,

Recgursion theorem Given a function f: X -» X, and a € X there exisls
a unigue function u: w — X obeying u(0) = a and u(n+) = f(u(n)) for all
n < w.

Froof. We'll show in fact that u is the intersection of the [obviously
nonempty] set £ of all those subsets A of w % X which contain (0,a) and
obey (n,x) €« A % (n+.t‘(x)) = A.

For this note that u itself is in €, so it suffices to prow}e that it is
a function. For this we apply the principle of mathematical induction
to the set S of all natural numbers n for which it is true that (n,x) =
u for at most one x. gq.e.d.

13> In @ addition of m [to be denoted by n —» n + m] is defined to be

the recursive function u: @w — & obeying u(0) = m and u(n+) = (u(n))+.
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Having defined this, we can define multiplication by m [to be denoted by
n — n.m] as the recursive function v: & — & obeying v(0) = 0 and

v(n+) = u(n) + m.

Next, raidging to mth powe» [to be denoted by n + 3 nm] is defined to be

the recurgive function w: ® +-3» w obeying w(0) = 1 and w(n*) = w(n).m.

The usual rules of a {lluaciic in @ can now be checked.

The usual order < of w is the subset of w % & consisting of all (m,n)
such that m = n. Since natural numbers are transitive sets the
corresponding weak relation = is equivalent to m &€ n, and thus is a
partial ovder, i.e. is a reflexive, antisymmetric, and transitive
relation. In fact it is a total order, i.e. one.also has n = m or m = n
for all m,n = w.

[For the last verification Halmos suggests using the following Lemma
proved inductively in 512 of book "If m & n then we can not have n <

m”. He used thia lemma to check n+ = m+ 2 n =m in w: which is the sole
property of w, amongst those listed in £12 of book as the Peano axlioms
of w, which is not immediate from the definition of w.]

0f course w is equivalent, i.e. related by a one-one onto function, to
some proper subsets, but it can be checked inductively that no natural
number has this strange property. Finite mets A are those which are
equivalent to some natural number. This number can be seen to be
uniquely determined by A, and ig called the mumber of elements $(A) in
the finite set A. Infinlte sets are those which are not finite sets.

(14> The terminology for partially ordered sets A [i.e. ordered pairs
(A, () = A x A)] 1is mostly self-explanatory, but note that the
[initial] segment s(a) determined by an a £ A, which congists of all x <
a, should be distinguished from the corresponding weak segment s(a)
which also has a in it, and again note that a largest element m is one
for which x = m is always true, while a maximal element m is one for
which the m < x is never true.

15> By an induction on n it is easy to prove the finite axiom of

cholce, i.e. that the cartesian product xien Ai of any finite family

{Ai}, i€ n, of sets is empty if [this is the trivial part, and is true
even without finiteness] and only if [this is somewhat non-trivial] at

least one of the sets Al is empty.

Many interesting facts of mathematics however require the following
generalization of the above result. '

Axiom of choice. The cartestian product of any nonempty family of
nonempty sels is aonewgely.

Alternatively, any nonemplty set £ of nonempty sets admits a cha!
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Function, i.e. a function f: € — U ¥ obeying f(A) €« A for all A e ¥,
|

h‘l’u:urcm. Every wnfinite set X has o subeel eguivaleant o w.
-"ﬁ"oof. Choose any choice function f for the collection X of all
nonempty subsets of X.

Next, let € be the collection of all finite subsets of X, and define g:
 — ¢ by g(d) = AU (£(X - ).

i +
‘By recursion we define Lhe function u: w--» ¥ obeying u(0) =@ and u(n )
= g(u(n)). This function u can be seen to be one-one. gqg.ed

|An easy corollary is that, like w, every infinite set is equivalent to
| some proper subset. This shows that our definition of infinite set
| coincides with that of Dedekind: a set is infinife iff it is equivalent
f to some proper subset.

5(16) Many mathematical applications of the axiom of choice are made via
I the following intermediary.

|

|

| Zorn’g lemma. If every totally ordered subset of the nonempty partially

| ordered set X has an upper bound in X, then X has a maximal element.
|

I" Proof sketch. By considering X, the set of all subsets of X which are

gubsets of weak initial segments of X, one can see that it would suffice
to prove the above result when the partial order is inclusion on X, a
nonempty set of subsets of a nonempty set X for which vy = x e ¥ 5 vy € X
holds, and which ig such that the union of any totally ordered subset of
X la also in X.

Define a function g: X — X by mapping each A to A unless by adjoining
gaome element of X-A to A we can get a bigger set of X . In all such

cases we map A to A U f(A), where f is a choice function for the set of

all nonempty subsets of X, and A is the nonempty subset of X-A
consisting of all elements whose adjunction to A gives a bigger subset
o X, What we need to show is that there is at least one A for which
the first case, i.e. g(A) = A, occurs.

L3

For this purpose consider all subsets of X which contain @, which are
preserved by g, and which are such that the wunion of each totally
ordered subset is also in it. One checks that the intersection of this
collection, which also surely obeys all these conditions, is in fact
totally ordered. Then the union A of this totally ordered sget is
checked to obey g(A) = A. q.ed.

Conversely, a much easier argument shows that Zorn’s lemma- implies the
axiom of cholice. 2

17> A partially ordered set is called we!! aprdered if every nonempty
subset has a smallest element. Note that this is a much stronger
requirement than demanding that it be totally ordered, i.e. that any
subget having two elements has a smallest element.
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| However, one can check that each totally arderéd et has a cofinal well
|| ordered subset, i.e. one having an element dominating any given element
of the bigger set. ’

;Printrlple of tranxfinite induction. 17 S i8 a subsel of a well ordered
Iset U obeying 8(x) € S= x € S for all x € W, then S = W

| Proof. Otherwise the smallest element x of the nonempty set W- S is
| outside 5 while its initial segment s(x) is contained in S. ged.

This generalization of induction is valuable because, besides w, there
are well ordered sets galore. :

[ Well ordering theorene Every set can be well ordered.
|i Proof. Use Zorn’s lemma on the set of all well ordered subsets of the
given set, equipped with the partial order of being an initial segment.
|. A maximal element must be a well ordering of the entire set, for
otherwise we could lengthen this maximal element by sticking on a new
| element at the end. ged.

(8> In the following generalization of the recursion theorem to all
well ordered sets U, Xu denotes the set of all functions with domain any

initial segment of W, and range in X.

- Transflinite recursion theorem diven a function f: XU — X, there existis
. a unique function u: W — X obeying u(x) = f(u|s(x)) for all x « W

Its proof uses a collection € of subsets of W x X defined analogously to

that in the proof of the recursion theorem, whose intersection is
verified, via transfinite induction, to be a function.

Two well ordered [or even partially ordered] sets are called similar if
there is an order preserving bijection, or similarity, between them.

Comparability theorem If tweo well ordered sets are similar then there
i a unigque similarity between them, and if they are not similar then
exactly one of them is similar to an initial segment of the other.

'Phoo_f sketch. The key point 1s to check that a similarity f from U onto

a subset of W must obey a = f(a) for all a< U. This gives the first
part, and also shows that a well ordered set is never similar to any of
ite initial segments. To complete the proof of the second part a

tranafinite recurgion is used to define a similarity of one of sets with
an initial segment of the other. g.e.d.

19> Following von Neumann we define an ordinal number « as a well
ordered set in which each element x is equal to its segment s(x).

As per the above definition, the underlying set of an ordinal a is

obviously wery special. Note also that the order of o is uniguely
determined by its underlying set: this follows because any partial order
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is determined by its initial segments, but now these coincide with the

elements of the set.

| Examples of ordinals. The natural numbers and w aré ordinals. Also

note that if a is an ordinal, then so is a+ with the obvious
continuation of the well ordering. These successors of @ are called
L WrL, ..

To get more ordinales we use the following simple fact, which is known to
be independent of the previous axioms.

Axiom of s=substitution. Let S(a,b) be a sentence such that each
{b:S5(a,b)), a € A is a well-defined set. Then a +— (b:5(a,b)) is a

. function.

[The argument "a +— {(b:S(a,b)} ias a function because it takes values in

| the union of the singletons {(b:S(a,b)}}” is erroneous because such a

"union” is defined only for families [= functions] {({b:S(a,b)}}, a = A,
and the existence of such a function begs the question asked.]

- More examples of ordinals. Using above axiom we see that there is a

function on @ such that n — ©w+n = (b: be w or b is the ith succesor
of «w for some 0=i<n}. The the union of w and the range of this
function, when equipped with the obvious ordering, is an ordinal, which
is denoted w.2. Its successors give w.2 + 1, @«.2 + 2, ... . Next, the
union of .2, and the range of the function n — ®w.2 + n, yields .3,
..« . Having defined w#.n, we can now make a similar use of the function
n — w.n to define wz, s s p BEC:; OEE.

€202 Theorem The relation of being an initial segment well orders any
st of ordinals.

Proof. Note that each element £, or equivalently each initial segment
8(¥), of an ordinal a, is also an ordinal under the restricted order,
and that its least upper bound in o« is ¥.

Using this an easy transfinite induction shows that one can have a
similarity between two ordinals iff they coincide, and then the
gimilarity has to be the identity map.

“If two ordinals are not similar, then the comparability theorem gives a

similarity from one of these well ordered sets onto.an initial segment
of the other, and same argument shows that the first ordinal coincides
with this initial segment of the second.

S0 any set of ordinals is totally ordered. A small extra argument is
needed to check that in fact it is well ordered. gq.ed. s

Suprenuua of & set of ordinals. By this we mean their union equipped with
the obvious ordering under which each of the given ordinals becomes an
initial segment of this. It is easily verified that this indeed
gives an ordinal, and is the smallest ordinal = all the given ordinals.
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‘It is false that "the set of all ordinals” exists. Otherwise, a

contradiction, called the Burali-Forti paradox, follows: the supremum of

~such a set would be an ordinal = all ordinals, which+is silly, because

ita successor is still bigger.

. Counting theorem Each well ordered set W is sgimilar to a unigque

ordinal ord(W).

The uniqueness is immediate from the above, the existence is not hard
and uses axiom of substitution and transfinite induction.

€21 It is often useful [e.g. in the following definitions] to replace
a family Ba. a = A, by the family Ea. a € A of pairwise disjoint sets,

obtained by replacing each Ba by a copy ga = Ba S 3 R

The suwm o+ of ordinals is the ordinal corresponding to "W followed by
U”, where W and U are any disjoint well ordered sets such that ord(W) =
a and ord(U) = f3. When @« and {7 are natural numbers this definition can
be seen to coincide with that of (13).

The product a.3 of ordinals is the ordinal corresponding to "W repeated
U times”, where again ord(W) = « and ord(U) = 3. More precigely we take
a pairwise disjoint family Uu, u < U, of copies of the well ordered set

U, form its union UuEU(Uu). and equip this union with the order defined

as follows: if a = Ui and b = Uj then a < b means either i < j or else i

= j and a < b in Ui = Uj.

Since Uueu(uu) = W = U, thlie ils same as saying a.f3 as the ordinal number

of the well ordered set obtained by equipping the cartesian product W x
U with the reverse loxicographle order (a,i) < (b,j) iff i < j or i = j
and a <b. When a and [ are natural numbers this product can be seen to
coincide with that of (13).

The arithmetic of ordinals comes with some surprises: one has e.g. 1+w

# w+l [the left side is w, while right side is m+], 2.0 # w.2 [the left
side is w, while the right side is the ordinal w 2 of (1%9)], and so
(1+1) .00 # w.(1+1). On the other hand many other laws of the arithmetic
of w have expected generalizations. "

Waring. In ordinal arithmelic it is natural to define the ordiiul

powen 2* as the ordinal obtained as the supremum of the ordinals 2, 2.2,
U e e R Note that its underlying set, being a countable union of

finite sets is obviously countable. On the other hand th; notation f)
is also frequently used for the [unordered] set of all functions from w
to 2, which, aas we'll see later, is not countable.

220 Equipping two given sets with any well orderings, and using the

comparability theorem, we see that they are & fortiori comparable in the
weaker sense that one of them must be equivalent to a subset of the
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other. This "relation” [in the "set of all sets”] is obviously
reflexive and transitive in the wusual sense, furthermore it is
- antisymmetric in the sense of the following.

[

| Schroeder-Bernstein Theorem. If A is eguivalent to a subset of B, and B
o a subset of A, then A and B are eguivalent to each other.

Proof. We are given an injection f: A — B, and another g: B -3 A, we
want to define a bijection A ¢« » B.

Let AA = A be the subset of elements with "Adam” in A. ["Father” being

- an element of B whose g-image is the element, "grandfather” being its
father, i.e. an element of A whose f-image is this new elewment, ... .]
Likewise let AB = A be the disjoint subset of elements with "Adam” in B.

What remains, "the non—éhrlatlans”, form Am. Similarly partition B into

three subsets.

The restrictions of f and g, respectively, are bijections AA — BA and
AB b BB. And the restriction of either f or g gives a bijection %)

“— > Bm' R

(23> Reoe counlable swets, 1i.e. those which are finite or else equivalent
to w, one checks that: countable unions of countable sets are countable,
g0 cartesian product of two countable sets is countable, etc., etc.

However the most interesting fact is that not all sets are countable, in
fact one haa the following.

Cantor’s theoroem A sel is never eguivalent to the seol of all its
subsets.

Proof. 1f there were a bijection f: X — #(X), then in particular we
would have some a = X such that f(a) = {(x = X: x is not an element of
f(x)). For such an a both possibilities "a is in f(a)” and "a is not in
f(a)” lead to contradictions. g.e.d.

(24> Cardinal arithmetic, i.e. relations between cardinal numbers, can
.be studied without knowing what cardinal numbers a are, or what one
means when one says card(A) = a, i.e. that cardinality of A is a.

[These definitions are in (25) below.] We simply need to know [as

follows easily from the definition in (25)] that card(A) = card(B) iff A

is equivalent to a subset of B, and that card(A) = card(B) iff A is
equivalent to B.

So in terms of cardinal numbers the Schroeder-Bernstein theof"em says a =
b and b £ a iff a = b.

Sum a+b of cardinalse js given by a+b = card(A U B), where A and B are
disjoint sets such that a = card(A) and b = card(B).

Product a.b of cardinale jg cardinality of "A added to itself B times”

- U i
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i.e. card(A x B).

Powers o o cardinals is cardinality of "A multiplied with
fitaelf B times” i.e. card(AP). ‘

|
There are again some surprises: for infinite cardinals one gets a+a = a

[and a.a = a, and one has a+b = max{a,b) when right side is an infinite
lecardinal .

F(25) An ordinal number a is called a cardinal number iff it is not
f‘aquivalent to any smaller ordinal number. A set A is said to have
{mdlmnty a, and we write a =- card(A), iff A is equivalent to the
 cardinal number a. [In other words out of all ordinal numbers arising
from the various well orderings of A the smallest one is called the
| cardinal number of A.] =+

yﬂhan A is a finite set then card(A) = ord(A) = $#(A).

Ordinal arithmetic and cardinal arithmetic are two different

. generalizations of the arithmetic of natural numbers, i.e. even though

though the arena of ordinal arithmelic is larger than that of cardinal
arithmelic, the latter is definitely not a restriction of the former.
For example, w and 2 are cardinals whose ordinal sum w+2 is not a
cardinal while the cardinal sum, also unfortunately denoted w+2, equals

the cardinal w. Likewise, the ordinal power Ef" of these cardinals is
not a cardinal, and should not be confused with the cardinal power,

which too is unfortunately denoted by Zm.

It is false that "the set of all cardinals” exists,. Otherwise, a
contradiction, called the Cantor paradox, follows: the supremum of such
a set would be an ordinal Z all cardinals, and the least of all such
ordinals will be a cardinal = all cardinals, which is silly, because the
cardinality of its power set is still bigger.

There is an established notation for the members of the well ordered
"unset” of all infinite cardinals. The least one of these [i.e. w] is
called aleph-zero. The next one [i.e. the least non-countable ordinal

(2] ig called aleph-one. The continuum hypothesxis is that O = £°. More
- generally, the definition of the "3th aleph” [ any ordinal] is the
expected one, and the "generalized continuum hypothesis” states that the
"(3+1)th aleph has the cardinality of the power set of the [3th aleph”.

Comments

(1) It seems that well ordering is the key concept required to
generalize the notion of shifting to infinite simplicial sets.

(2) There is possibility too of transfinite generalizations of theoremns
like the Kneser conjecture.

112

—— T

—ma b e R

4
.
L]

|




GENERAL TOPOLOGY b

From the book by Kelley:

1> By a Lopology 7 is meant a set of sets closed with respect to
arbitrary unions and finite intersections.

One says then that 7 is a topology on the set X = U 7, and the pair
(X,7) (or even X, if 77 is understood) is called a topological space .

The members of 7 are called the open sets of this space.

Thus a subset 7 of the poset F(X), of all subsets of X under £, is a
topology on X, iff it is closed with respect to supremums of arbitrary
subsgetg, and infimums of finite subsels. Note also that the least
element @ and the biggost ! o X of *T(X) are contained in any

topology 7 on X.

€2> The poset Cunder = J of all topologziecs on X has as least element
the indiscretse tapology 7 = (0,X), and as biggest element the discrele
tapology F(X). Furthermore each subset of this poset has an infimum,
given by the intersection of the given topologies, as well as a
gupremum, given by the intersection of all topologies which contain the

given lfLopologies.

In this context note that the union of two topologies - e.8. of 8@,

{a}, {(a,b,c)} and (&, (b}, {a,b,c)) — need nol be a Lopology.

Given any J < #(X), the topology 7 generated by ¥, or the topology
having * as a subbase, is the intersection of the topologies containg. ,
and is easily verified to consist of all unions from the set & of all
finite intersections from #. A set £ = 2(X) of this type is said to be

a base for 7.

(3> UWe equip the power set F(X) [of a nonempty X] with the [free] order
reversing itnuvalutiem i: B(X) -» P(X), iei = 1, which associates to each
A its (‘l'llliji"'h-‘--? A* Alaon, any p: J“(XJ =, .’I(XJ such that Pep = Py will
be called an didempatant or projecticrm spev-alarv of T(X). Note that the
composition peq of two, commuting idempotents p and q is also an

idempotlenl .

For a topological sgspace X, the complements U’ of‘. its open sets U are
cB] .1 ed j. t“ clul-a_-\.: TS . » aﬁd ita haRdbleadn A e u'l-ui cl s 3 (X) » I (X) 18
defined by cl(A) = intersection of all closed sets containing A.

1f p: P(X) -+ P(X) is the closure operator of a topology 'on X, then it
is easily seen that A € p(A), , prp = p, p®) =&, and that p is

order-procsruing , i.e. A S B p(A) € p(B): in facl p even prases wes
supromuas of finite subsets, j.e, p(A U B) = p(A) U p(B) V A, B e 2(X).

» ] "
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Preoof To check that F € 2(X) is a fixesd 5 * of the non-decreasing
map p: F(X) -» P(X) it suffices to verify p(F) € F '. Note further that
the set & = (F € #(X): F = p(F)) of these fixed pointg containe & and X,

and is obviously closed with respect to finite unions.

Since p is order-preserving it follows that, for any & < ¥, p@w )< p(A)
= AV A e ¥F, thus yielding p(ne) = "« , So # is also closed with respect
to arbitrary intersections. Homee I = (U e P(X): U €« F) is a topology

on X. -

To see p(A) = cl(A) = (Fe #: F= B), note that one of the F's in#
which containg A is p(A), and all other such F's are bigger. g.eod.

Clearly the conjugate japsi of any idempotent p of P(X) is also an
idempotent, e.g. for a topological space X, its interior operalor int:
P(R) —» #(X), which associates to each A the union of all open sets
contained in A, is the conjugate of its cleosure operator. Easy examples

show that int and ¢l need not commute with each other.

The semigroup Sp (under ») generated by an idempotent p of # (X), and the

involution i, consists of all self-maps of *(X) obtainable by an
alternating compositions ..sispsisa.. of these two maps. Clearly the
semigroup of p coincides with that of its conjugate. The Kuratowsiki

semigroup of a topological space ¥ is defined by S5(X) = Scl = Sin?"

even clear that this topological invariant is a

A priori it is not
in

finite semigroup, so the following, which too was essentially
Kuratowski's thesis, is very striking.

For any topological space X the self-map cl-int of P(X), and
are itdempotents of F(X). Furithermors, the
"(:Ph’ﬁ‘.t_"r‘-ﬂ’ crnare X hoe a2t wmact 14

Theorem
its conjugate intacl,
Kiiraltrnookd oamd 2y oy 5(X) (,f an

element s.

The first part follows by using the fact that while the order

Froof.
“ cl(A), the order preserving

preserving idempotent ¢l is exponding, A
idempotent int is contractime, A = int(A).
Thus our semigroup Sp, p = ¢l, has, besides p and ispei, the idempotents
peiopei and iepeiop. The equation pesiapesiepelapel = peiapei shows that
the eighth term of

fig g le Yngats Sac

so this sequence has at most seven distinct elements.

is a repetition,
Likewise, lspeiepeicspeiop = jepeicp implies pe iecpesicpeisp = p= iap, and

shows that the seventh term of
P, iep, peiep,

is a repetition, and so this sequence has at most six distinct terms.
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ﬁdding 1 = i=i we see that Sp has at most 14 elements. ge.d

| L]

}Ror the real line B, i.e. the real numbers with the topology having the
set of all open intervals as a base, card(S(E) = 14 because the action
Cﬁf S(R) on A = (0,1) U (@ n (1,2)) U {(3) gives 14 distinct sets.

—

€4> A poset (D,z) is called a directed set if for all a,be D we can
find ¢ such that ¢ = a and ¢ = b.

Eﬁenerallzlna the notion of a &eqqencé in X, i.e. a function from the
iwell ordered set [N of non-negative integers to X, one defines a net in X
|to be a function S from any directed set D to X.

If X is equipped with a'topology. then a convergzenl naet S of X is one
for which there is an x = X with the property that for any open set U
. containing x, the net § is eventually, i.e. for all b= some a(U) e D,

in U.
'l'l‘}‘_bﬂ)“ﬁ'ﬂ‘r _,4 E.‘t"!"f': u (J}' "% | "“i" l?-'l"': e2d Sy Ve x 3 & o;v!\;_-" ;'ff call neta r..f x
which conuvergea o golnt F . wentoolty dn U
Proof To check the non-Lrivial "if" let Dx be the sef of all open sets
ﬁ containing x € U, directed by the partial order £, and choose a net S:
rl Dx —» X for which S(U) € W with S{W) « U if W is8 not a suhset of U
|
This net converges to x, since given any open set V conlaining x, S(U)

i

is in V for all W in D such that W s V.

S50, by hypothesis, this net should eventually be in U. S0 wve can find
gome Ux € D such Lhat ﬂ(uxJ € U. This implies Ux € U. Being the union

of all such opon sets W x € I, the ot U must be opo g.c:.<d

L3

The "if” part of the above result is false if we confine to sequences.
However, for first coont Ble Lpaces, i.e. those for which each each open

set containing x £ X contains one of a countable list 3x of such open

 8ets, sequences do suffice.
If a net 8: D —» X conaovgen to x € X it is useful to use the notation x
= 1lim S o % = llmdS(d)] even though there 18 somevdanger of confusion
because x = 1lim S and y = lim S need not imply x = y. However, for

Hausdoao It spaeces, i.e. those in which distinct points can be put in
die joint open sets, the limit of a convergent net is necessarily unique.

Even if a net is not convergent it can still have a lmii point x e X,
i.e. a point with the property that for any open set U containing x, the
net is fregusntly, i.e at least once after any a D, in U.

If x is «a linit pain? of a net S of X then one can show thetl there (s a
subnoel T of S which copucreac 1o x, provided by subnet we mean a net of
X oblainad Ly voumpoglng S: D — X with a map N E —3% D sueh thal N(e) is
arbitrarily large when e Ias large enough
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However it is not always possibly to find some restrietion T: E -3 X of
=3

S to a cofinal gsubset E of D, i.e. one containing an element = any given

element of D, which converges to x.

Theorem lLet S: D x E — X be a function from the praoduct of directed
sete D and E such that there ds an x € X with x = 1 imd & :lme S(d,e))
Then uane cuan find a function f: D » E such that x = 1 imdS(d s F Y.

o

This follows by the usual "diagonal method” for iterated limits of
sequences. In above formulation the function f can not be fixed in

advance and depends on 5.

The product partial order makes the product of directed sets into a

directed set. So e.g. set ED of all functione £ from D to E is

directed. Obviously the conclusion of the last result is true for all

sufficiently large functions f, 8o we havae x - lim(d f)(ADaS)(d,f) where

.‘.\D I S BD <3 . D ¥ B la defined by (d,.f) +3 Cd,fld)) Likowise

defining AE : DE x E~-3» Dx E by (g,e) v » (g(e),e) one can establish
R g H i S 3 = i e .

the formula llme(1tmd.(d,s)} 31m(g.e)(AE S)g, 8) The advantage of

this reformulation is thal now Lhe diagonal g AD and AE are given in

advance and are independent of S.

€68> A fiter on X is a set # of nonempty sets of X which is closed with
respecl Lo supersels and finile intersections.

As far as convergence questions are concerned nets carry some "extra
baggage”: given any net § in X we will see that what is really important
is the filter ‘?5 consisting of all subsets A of X such that S is

eventually in A.

Another example of filter: if X is equipped with a topology, then each x
e X has its naighbourhaoand fFfiltan 'Fx' which consists of all sets

containing some open set containing x.

A conveorgeot Cittan %, of a topological space X, is one for which there

is an x € X such that ¥ contains.kx, and then we write x = lim # [even

though x = lim ¥ and y = lim ¥ need not imply x = y for non-Hausdorff
spaces].

Note that lim 8 = x iff lim 58 = X. Conversely given a f&lter.? on X
let Qr be the directed set of all pairs (F,x), Fe ¥, x e F, equipped
with € of first factor, and define %w: I&,—» X by projecting to the

second factor. Then it is easily seen that lim # = x iff lim 5? = Sty

The above devices help in translating results inveolving nets into
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results involving filters and conversuoly. For example a result proved
‘above has the translation:

*
A subont U of o lopalogical sgpace X ts opon $fF U ds contained in any
f“.z‘tﬂ Uf X which convy & o i gassinl uf U

However, being devoid of the aforementioned ™extira bagpage”™, the
language of filters is somewhal sémpler than that of nels. For example,
the notion of a bigger [with respect to € ] filter is obviously simpler
than the parallel notion of "subnet”. Again, using Zorn's lemma, we see
that each ¥ is contained in some maximal or ultrafilter : defining the
parallel of this useful notion for nets requires more effort.

Note that any subset ¥ of a filter ¥ satisfies the fiwnite irntorocctiong

property, i.e. the IiIntersection of any of its finite subsets is
nonempty. Converscly given any subset 5 of #(X) satisfying the f.i.p.
the filter generated by ¥, i.e. the interscction of all filters of X
which contain , can be obtained as the family of all supersets of the
family B obtained by taking all finite intersections in ..

A compact topological space X is one for which any family of open sets
having union X has a finite subfamwmily whose union is also X. Using the
fact Lhat it amounts Lo saying Lhal any family of closed sobs having Lha
finite interacction property has a nonemply intersection one can check
the following.

T"l{‘ll!'vhn_ ! z._-‘u ATty 14 ¢'f:-;:'r x 5’ - P L P A L Tt -'fr' ¢ ".'- Theip-5 (& x I =
o ey gend

Equivalently X is compact Iff each not of ¥ has o convergent gubnet

Unless otherwvise mentioned any subset Y of a space X is understood to
have the subsjaca: Ltopolagy, i.e. the one whoge open sets are the
intersectlona with Y of the open sets of X. The ¢lassical exanples [gee
¢.(5)] of compact spaces are the closed and bounded sgsubsets Y of the
real line K.

€6) A conlblinuous wmes between topological spaces is one which pulls back
each open set to an open sel. The isomorphisms of the category of
topological spaces and continuous maps are called homeomorphisus .

The product topolagy, on the carlesian product X = Maca Xa of

topological spaces xa. a A, is defined to be the smallest topology
which makes each of the projections n_: X — Xa contlnuous.

Thus this topology of X = naeA Xa is the one which has 'as a base all
gsubsets of the type Masik Ua. with Ua open in Xa, and such that (a: Ua >
Xa} is a finile subset of the indexing set A.

It is easily seen that the n_'se, besides being continuous, are also open




maps, i.e. they image each open set of X to an open set of xa, and that

a function into the product is continuous iff its composition with each
of the projections ig continuous.

A property shared of the coordinate spaces may or may not be shared by
arbitrary products of such spaces. For example for Hausdorffness the
answer is yes. On the other hand first countability is not enjoyed by
arbitrary products of first countable spaces, in fact a product of first
countable spuces i [furst emmtable iff all bul a countabile naber of
the factors are Indiscrele spaces: | The most important result of this
genre ls however the following. :

Tychonofi{’s Theuroem Any product of compacl spuuccsn s compact.
-

FProof, Choose any ultrafilter # of the product. Adding all supersets
to its ath projection ﬂa(ﬁ) we obtain an u]trafilter.ﬁa of Xa. Since Xa

is compact Fa converges to some point X i.e..Fa contains all open sets
Ua of xa conlaining X S0 ¥ containg the pull backs (na)-l(Ua) of all

guch sets, and thus the neighbourhoecd filter of the point x of the
product whose ath coordinate is X, - el

7> A [partition or] decomposzilivis: X/R of a space X is usually provided
with the biggest topology which keeps the quotient map n: X -3 X/R
continuous .

1t helps to think of the points of X/R as the leafs of X, e.g. in this
language the open sets of X/R are precisely the maturated open sets of
X, i.e those which contain complete leafs only, and we see thatn is
open iff the saturation of each open set of X is open.

On the other hand, the decomposition is upper semi-continuous, i.e. the
quotient map is a ¢clowad man, j,e. images each closed set to a closad
get, iff leafs houve arbitracily small saiuated neighbowhoods, 1.e. a
gaturated neighbourhood contained in any given neighbourhood.

The reason for above terminology is that if F <« R x [ is the the area

under the graph of a non-negative function fd —» [E, then the
decomposition of F into vertical segments is of the above type iff f(x)
= 1im f(x) for all »x

y- e W
The R in the above notation stands for the eguivalanwe pelatic:, R+ X
X corresponding to the partition, I1f this is a closed subsat of X% X
then X/R is Rauvador(f The converse is true also provided the quotient

map la open. -
(8> By an emboedding e: ¥ -—— Y is meant a continuous map which is open
and one one. [In general a continuous injection is not open, but it is

so if X is compact and Y is Hausdorff.] Our embeddings will be
constructed as follows:

Let F be a family of functions f: X -3 Yf and let e: X -3 Y = Necr Yf be
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defined by (e(x))f I Then the continuity of the f's ensures that

e is continuous. Furthermore if for each closed set A of X and a point
x of X not in it there is an f in F with f(x) not in cl(f(A)), i.e. if F
disblinguizshes points asd closed sets, then e is open. Lastly if for
each distinct pair of points of X there is an f in F which images them
to distinct points, i.e. if F distinguishos poaints, then e is also

one- on.

S0, to embed ¥ into say a cube, i.e. a.product of the interval I = [0,1]
of real numbers, we need a family of continuous functions X --» I which
ig sufficiently rich in the senseée explained above. For this, we use the
following celebrated result, where a normal space is one whose disjoint
cloged sets can be contained in disjoint open sets.

Urysahn®s [ammmas Tf A and B areée disjoint closed sols of a noraal s e
X, then lhere is o condinucus funclicn f: X > [0,1]) such that f(A) = 0

and f(B) = 1.

Proof. Because of normality we can choose an open set U1/2 nested
between UD = A and U1 = B' wvhose closure is contained in the latter.
Now find a similar U1/4 nested between U0 and 01/2' and a Lh/l nested
between U1/2 and U1, and so on.

Define f: X — [0,1] by f(B) = 1, and f(x) = inf {t: x = Ut} for % & B,
Clearly f(A) = 0.

To check the continuity of f it suffices to verify that the pull backs
of all infinite open intervals of [K are open, or equivalently, that all
sets of the type {x: f(x) < r} are open, and all of the type (x: f(x) =
r} are closed This follows from

{x: fftx) € ¥) =4 {Us: & £ r), and
fx: £Lx) S ¢) = n {Ua: » 2> 2} 50 {r1(”a}: 'l A 1

Here the first assertion only uses that l% < l% whenever s < t. The

firat equality of the second assertion uses this as well as the fact
that the dyadic rationals are dense. The last eqpality uses the fact
that we have in fact cl(Us) = Ut whenever s < t. ged

Stone-Cech Compactificatiorn. It follows as an immediate corollary of
Urysohn's Lemma, that if X is Mausdor-ff and normal , then the family F of
all continuoug functions X — 1 distinguiashes .pointg and closed sets.

S0, for all such spaces X, e: X -— IF is an embedding of X in the cube
IF. The closure of e(X) is the required compactification.
However, such an X need not embed in the Hilberti cube Im , because for

this it is necessary to assume that, like this cube, X is second
coumitablsa, i.e. that its topology has a countable base {Ul. U?. R
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Ex ding in Hilbert cube. Assuming that X is Hausdaoar ff and normal and
has o countabla haos {Ul, UZ' .. )» we can (ind within each Ui a smaller

open sel V1 whose closure is contained in U1 , and then, by Urysohn's

a countable family F of conltinuocus functions f_i:X —3% 1 such that

seen to distingulgh polnts
fi (x), is

Lemma,
._"(Vi) = 0 and f(Uj') = 1. 8ince F too can be
and closed sets, it follows that e: X -- IIN, where (e(x))i

an embedding of X in the Hilbert cube. '

i!‘;Mt:alll now that a set X which is equipped with a non-negative symmetric
function d: X *x X — [, which is positive outside the diagonal, and

;pbeys the triangle inequality d(x,y) + d(y,z) > dtx,2), 'ls ecalled & ]
et yio epaca,  Such an (X,d) can be equipped with the topology having J
the set of all balls (y: d(y,x) = r}) as a base. A topological space X i

" is called metrizabhle if its topology is of this type.

Urysohn's Metrizatinn Thesrem A Howvedorff. normal. and second

countable space ts metrizsable. ‘.
|

E‘.I'h.l.ss follows at once from the above because it is easy to verify that
 the product topology of the Hilbert cube coincides with that arising

from the metric d(x,y) = }:i(:{z)i.lxi - yil J

-

(5
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