
Plain Geometry & Relativity, Notes 8 - 20

8. The three things that we left to the reader in the text are also easy to check.
The Lemma holds because the product of the slopes of the diagonals of the
parallelogram {(0, 0), (t,−ct), (t′, ct′), (t+ t′,−ct+ ct′)} is ct′+ct

t′−t ×
−ct+ct′
t+t′ = c2.

Again, −c2τ2(
−→
bb′) = −c2τ2(γ−1, γv) = −c2((γ−1)2−γ2v2/c2) = −c2((γ−1)2+

γ2(1/γ2−1)) = −c2(2−2γ) = −2c2(1− (1−v2/c2)−1/2) = −2c2(−v2/2c2 + · · ·)
approaches v2 as c → ∞. And, for the Exercise in Figure 3 note that d−→r /dτ
along C at the point of tangency (t′, a), a 6= 0 – using coordinates (t′, x′) in the
plane containing the tangent line and the parallel S′ – equals the same quantity

along the tangent line at −→r = (t′, a). So it is equal to the vector (1, 0) =
−→
0b′

times dt′/dτ along the tangent line at this point, and from τ2 = t′2 − a2/c2
we see that this derivative is equal to τ/t′ = (1 − a2/(c2t′))1/2 < 1. Also, our
clock paradox implies the one usually stated, because, if the cartesian motion C
begins and ends on any ray S, then τ2 − τ1 = t2 − t1.

9. Velocity addition formula. Given a cartesian motion C, the time t of any
observer S increases strictly on it, so it has equation r(t) = (t;x(t)) and dx/dt is
its varying velocity as observed by S. For example S can use an orthogonal basis
of his euclidean space t = 1 with respect to which x(t) has cartesian coordinates
(x1(t), x2(t), . . . , xn(t)) and measure the n components (dx1/dt, . . . dxn/dt) of
dx/dt. Likewise, the observed velocity dx′/dt′ of C as measured by another

framed observer S′, that is one equipped, besides his unit time vector
−→
0b′, with

an orthogonal basis for his euclidean space t′ = 1, gives us another n-tuple
(dx′1/dt

′, . . . dx′n/dt
′). The two bases of the (n + 1)-dimensional vector space

used by S and S′ are related by a matrix A = [aij ], 0 ≤ i, j,≤ n, i.e.,

t = a00t
′ + a01x

′
1 + · · ·+ a0nx

′
n,

x1 = a10t
′ + a11x

′
1 + · · ·+ a1nx

′
n,

. . . . . . . . .
xn = an0t

′ + an1x
′
1 + · · ·+ annx

′
n;

from which we get, for all 1 ≤ i ≤ n,

dxi
dt

=
ai0 + ai1dx

′
1/dt

′ + · · ·+ aindx
′
n/dt

′

a00 + a01dx′1/dt
′ + · · ·+ a0ndx′n/dt

′ ,

a formula relating the velocity components of the same motion C as measured
by two framed observers. Often framed observers are called observers, but for
us an observer—that is a ray per the fourth paragraph of the text—has an O(n)
worth of frames. Components of an observed velocity depend on the frame, for
example, if we reverse a basis vector, that component changes its sign. Given
any other observer S′, the central observer S has an O(n− 1) worth of frames
in which the observed velocity of S′ is (v, 0, . . . , 0) with v positive. If S uses one
of these, and S′ the reflected frame as in the fifth paragraph of the text, then
t = γ(v)(t′ − v/c2x′1), x1 = γ(v)(vt′ − x′1), x2 = x′2, . . . , xn = x′n. But S′ can, if
he wants, ‘correct’ his reversed orientation by reversing his x′1-axis, when A is
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given instead by t = γ(v)(t′+v/c2x′1), x1 = γ(v)(vt′+x′1), x2 = x′2, . . . , xn = x′n
(and it is usually this case only of the above formula, with C galilean, which is
called the velocity addition formula), and more generally, S′ can transform the
reflected frame by any orthogonal transformation he likes of t′ = 1.

10. Though in the proof in the third paragraph of the text we temporarily
assumed the central ray orthogonal to the euclidean n-flat, we emphasize that
the (n+ 1)-dimensional vector space is itself not euclidean. This proof gave us
all the linear reflections preserving the cone, there is one and only one in each
flat of Bn. Therefore, the linear reflections preserving the cone form a smooth
manifold diffeomorphic to the canonical line bundle of RPn−1 : the flats through
b constitute the RPn−1; and for the flats L constituting any small open subset U
of this manifold we can choose a continuous normal direction; so, identifying the
other flats of the ball parallel to these L’s with their centres ` on these directed
diameters, we obtain local trivializations U × (−c,+c). We note also that this
diffeomorphism type stays put even for c =∞, i.e., when we are talking of the
space of all orthogonal reflections of the euclidean n-flat. The next result of
this paragraph can also be sharpened: there is a unique linear reflection of the
cone which switches any given pair of distinct rays S′ and S′′. For, if neither
ray is the central ray S, conjugation with g, the reflection of the cone switching
S′ and S, gives us a bijective correspondence between reflections switching S′

and S′′ and those switching S and gS′′, but the latter set is a singleton. And,
regarding our definition of congruence for n-ball geometry which concluded this
paragraph, we note that, up to a homothety, any linear isomorphism of the
cone is a composition of at most n + 1 linear reflections of the cone. For, if
the isomorphism maps the central ray S to S′, then by composing it, if need
be, with the reflection switching S 6= S′ and a homothety we obtain a linear
isomorphism of the cone which is the identity on S. It maps any diameter PQ of
the n-ball to a line segment P ′Q′ having b as its mid-point and with P ′ and Q′

on the boundary of the cone, which is possible only if P ′Q′ is also a diameter of
the n-ball. So our map restricts to an isometry of the euclidean n-flat mapping b
to itself, hence it is a composition of at most n orthogonal reflections. Also, the
linear reflections of the cone are conjugate to each other in the group G(n) of all
their compositions: for, if ` 6= b, then conjugation with the linear reflection of
the cone which switches the rays through these two points gives us a reflection
whose flat passes through b, etc.

11. Using notes 9 and 10, G(n) is isomorphic to the group of matrices A re-
lating ordered pairs of framed observers. The ‘dictum’ of the fourth paragraph
says that if observers S′ 6= S are equipped with mirror image frames under
the linear reflection of the cone switching them, then their measurements must
be related by the corresponding matrix A. Since this is obviously true also if
the same observer replaces the frame he is using by any orthogonal reflection,
the measurements made by any ordered pair of framed observers are related by
the corresponding matrix A. Usually the orientations of the framed observers
are compatible with each other, so only those matrices A come into play whose
determinants are positive, equivalently, only the subgroup G+(n) of all composi-
tions of any even number of reflections is admitted. Therefore, as we mentioned
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before in note 5, mirror relativity is slightly stronger. Notably, an invariant
vector a = 0 even for n = 1, which is false if an orientation is preferred: the
concluding step in the argument that we used to obtain the mass-energy formula
is then valid only for n ≥ 2. The subgroup G+(1) of translations is abelian, but
the group G(1) of all motions of a 1-ball (the real line has isomorphic groups) is
not commutative. This homogenous geometry of a 1-ball, i.e., a bounded open
interval, is however not non-euclidean per our usage of this adjective, because
the parallel postulate is trivially true. Sometimes this adjective is used only for
homogenous geometries, then of course it is not at all true that non-euclidean
geometries are ‘dime-a-dozen’ for n ≥ 2. As for the ‘pragmatic considerations’
of the fourth paragraph, these objections were (imho) raised to his geometry by
practical fellow Egyptians even in Euclid’s lifetime! A down-to-earth person is
none too impressed by lines that don’t end, or a parallelism of line segments that
is not experimentally decidable: a bounded subset of Euclid’s plane, above all a
disk of a possibly large but finite radius around him, is eminently more reason-
able to him. The quotation in this paragraph is from a paper by Arnol’d which
is available on my website. It alerts us that, it is the individual times t′ and the
euclidean spaces t′ = 1 of our ‘ball’s worth’ of observers S′ that are basic, what
frame an experimenter uses to make his measurements, or a theoretician to do
his calculations, is only of secondary importance.

12. A modicum of calculations, in the remainder of our 3-page essay, then
gave us time dilation and length contraction by γ(v) = (1−v2/c2)−1/2, the clock
paradox, and the mass-energy formula E = mc2. Also we saw that, relativity
is a hidden variables theory : all the mirror images of any point of the cone
form an absolute but curved space, and the homogenous function which is one
on it an absolute nonlinear time τ ; but to each observer S′ this curved hidden
space appears flat, a ball B′ of radius c around him, on which his linear time
t′ = 1. The cone is the same for all the observers, but only its hidden foliation
τ = constant is preserved by the full group G(n) generated by all the linear
reflections of the cone, its observed foliation into parallel balls t′ = constant is
preserved only by the subgroup O(n) generated by the reflections preserving the
observer S′. That a space consists of all the mirror images of any of its points
is nice, but, infinite divisibilty is not pragmatic : one may object to Euclid’s
plane also on the grounds that it can be tiled by an arbitrarily small square!
Magically, this new objection is also taken care of if we confine ourselves to an
n-ball, n ≥ 2, of radius c < ∞ : if a polytope of rays tiles absolute space, its
riemannian volume is bigger than a positive constant depending inversely on c.
So the volumes of the closed manifolds Bn/Γ of note 3 are all more than this
constant. An observer hears the hidden shapes of these ‘particles’ as proper
values of Γ-periodic ‘waves’ on the covering space τ = 1 whose differential
equation can be written in his coordinates. Historically, the theories of the sub-
atomic world also arose from c <∞, but no one seems to understand this other
side of the relativistic coin really well. Anyway, some of what little I myself have
been able to understand about these quotients is in Hyperbolic Manifolds (2012),
which will be available from my website as soon as I can write a prefatory note
explaining what I was up to in this unfinished paper.
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13. The cone is all the spacetime one really needs. Like positive numbers on
the real line (cf. note 3) it is closed under P+Q, but all its differences P−Q form
the full (n+ 1)-dimensional vector space. The partial order defined by, P > Q
iff P −Q is in cone, is quite basic : cartesian absolute motions are precisely all
the directed and strictly increasing smooth arcs in the cone. For P > Q implies
τ(P ) > τ(Q) – the converse is not true for c < ∞ – and that extra condition
‘dr/dτ nonzero along a ray S′(τ)’ on the smooth arc is equivalent to saying that
if P comes after Q, then QP is parallel to a ray of the cone, i.e., P > Q. Also,
it is true that P > Q ⇐⇒ τ(P +R) > τ(Q+R) ∀ R, but in our set-up parallel
motions are deemed to be the same, therefore, if we admit only the irreversibility
of time, then these are all the possible smooth motions.

14. Considering what all had gone into that definition – see note 6 – of the
riemannian metric on τ = 1, it is a miracle that the associated pseudometric on
the cone makes sense for any bounded open convex subset Ωn of affine n-space!
The distance ÂB between the rays through A and B is equal to c

2 log(XBXA
Y A
Y B ) if

AB extended meets the boundary in X and Y . In this two-line Ph. D. thesis—as
Littlewood dubbed this discovery—of Cayley’s, c > 0 is arbitrary, but if Ωn is
an open ball of a norm ‖ · ‖ on n-space, e.g. Ωn = Bn, the best choice is its
radius. For then this definition also gives us a distance between rays through Bn

which is preserved by all the reflections of the cone, and which approaches the
euclidean distance for c → ∞, so it coincides with the riemannian metric. To
check this we’ll again, as in Figure 2 and the subsequent paragraph, temporarily
think of the (n+ 1)-dimensional vector space as euclidean.

Though the ratios XB
XA and Y A

Y B depend on the line cutting four given coplanar
and coincident lines in X,A,B and Y (unless they are parallel, i.e., coincide at
infinity) their product XB

XA
Y A
Y B is an invariant. Indeed, using the sine law for

triangles one can check – Figure 4, Exercise – that in this biratio one can replace
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each length by the sine of the subtended angle. Using this invariance we’ll now
prove the triangle inequality ÂC + ĈB ≥ ÂB whenever extending each side
gives us two points on the boundary. When ABC is in a plane through the
origin 0, one side is in fact equal to the sum of the other two, for example, for
the triangle drawn in Figure 4, ÂB+ B̂C = ÂM +M̂C = ÂC. If 0 is not in the
plane of ABC, a similar argument gives us ÃC+ C̃B = ÃB for the convex open
planar subset Ω, shown shaded in Figure 4, of the cone between the (possibly
parallel) lines X1X2 and Y2Y1. Which implies the desired inequality, for the

left side is the same as ÂC + ĈB, and we have ÃB ≥ ÂB because X′A
X′B ≥

XA
XB

and Y ′A
Y ′B ≥

Y A
Y B . Any linear reflection preserving the cone preserves its Cayley

distance because it does so on the ellipsoidal section – see Figure 2 – on which
it coincides with an orthogonal reflection. Finally, we note that a point of the
n-ball at euclidean distance r from its centre is at Cayley distance c

2 log( c+rc−r ),
and this quantity approaches r as c→∞.

15. By a piecewise linear absolute motion P0P1 . . . Pk we mean a directed
and strictly increasing—in the sense of note 13—broken line in the cone. The
elapsed time for this motion is τ(

−−−→
P0P1) + τ(

−−−→
P1P2) + · · · + τ(

−−−−−→
Pk−1Pk). This

because, each
−−−−→
PiPi+1 is parallel to some ray S′, on which ray τ coincides with

the linear time t′ of this galilean observer, so τ(
−−−−→
PiPi+1) := τ(Pi+1 − Pi) =

t′(Pi+1 − Pi) = t′(Pi+1)− t′(Pi) is the time recorded by the moving clock over
this segment. However, since the absolute time τ is non-linear for c < ∞,
we can’t write τ(Pi+1 − Pi) = τ(Pi+1) − τ(Pi), and then cancel etc., to get

τ(Pk)−τ(P0). Instead, we have the startling clock paradox : τ(
−−−→
P0P1)+τ(

−−−→
P1P2)+

· · ·+τ(
−−−−−→
Pk−1Pk) ≤ τ(Pk)−τ(P0), with equality iff the Pi’s are all on the same ray.

Equivalently, the reversed triangle inequality τ(
−→
AC) + τ(

−−→
CB) ≤ τ(

−−→
AB) holds,

for any three points 0 ≤ A < C < B, with equality iff they are collinear. To see
this recall that in the sixth paragraph of the text we showed that τ2(t′;x′) =
t′.t′− 1

c2x
′.x′ if one uses components parallel to the time and the euclidean space

of any galilean observer S′. If we take S′ parallel to
−−→
AB, then x′(A) = x′(B), so

the right side is t′(B)−t′(A). LetM be the point on
−−→
AB such that t′(M) = t′(C).

Then τ2(
−→
AC) = (t′(M)−t′(A))2− 1

c2
−−→
MC.

−−→
MC ≤ (t′(M)−t′(A))2, with equality

iff M = C. Likewise τ(
−−→
CB) ≤ t′(B) − t′(M), which completes the proof. We

note that, if the above absolute motion is given by the vector function r(s) of

elapsed time, then on the interior of each
−−−−→
PiPi+1 we have ds = dt′ and dr

ds =
−→
0b′,

the ‘absolute velocity’ of the parallel S′. So the above definition of elapsed
time is the same as in the seventh paragraph of the text, only then we looked at
directed and strictly increasing arcs that are smooth, i.e., which are, so to speak,
broken lines with infinitely many infinitesimally small links dr. Instead of the

above finite sum, it is the analogous riemann integral
∫ P
P0
τ(dr) taken along the

motion that gives us the elapsed time s(P ) till any point, so τ(dr) = ds, i.e.,
τ(drds ) = 1. That is, the length of drds is identically 1 with respect to the quadratic
form τ2; so, as in euclidean differential geometry, we’ll also call this derivative
the unit tangent vector u(s) at any point of the smooth motion.

16. For c <∞ extra hypotheses like smooth or p.l. are not needed! A strictly
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increasing function from an interval into the cone is trapped near each point
in the parallel cone, so it is continuous and, as seen by any observer S in his
euclidean space this à priori motion is lipschitz in his time t with constant c, i.e.
‖x(t1)− x(t0)‖ < c|t1 − t0|, so it is differentiable almost everywhere. The same
integral gives the elapsed time s(P ), and this motion has a unit tangent vector
dr
ds a.e., but d2r

ds2 is only a generalized function or distribution. For example,
for a p.l. motion it is supported on the finitely many bends. Nevertheless, the
equations around the mass-energy formula in the eighth paragraph of the text
are still valid weakly. Likewise, the yang-mills formulary, which depends on the
special feature of 4-dimensional space that SO(4) is not simple, is valid weakly if
we allow all these motions, which suffices to deduce that, there exist topological
4-manifolds which do not admit any lipschitz structure! On the other hand in
Sullivan, Hyperbolic geometry and homeomorphisms (1979), it was shown that,
any topological n-manifold, n 6= 4, has a unique lipschitz structure! At one point
in this almost surreal paper – it is available on my website – Sullivan invokes
his paper with Deligne that was cited in note 3.

17. Arbitrarily close to any à priori motion is a piecewise linear absolute
motion with the same end points and with elapsed time arbitrarily small! A rie-
mann sum involves an approximating broken line with almost the same elapsed
time; to make this time arbitrarily small use the fact that, any two points on
a ray can be joined by a planar zig-zag of a small amplitude whose links are
alternately almost parallel to the two boundary rays. Smooth absolute motions,
even those with a small elapsed time, are likewise dense in à priori motions. The
clock paradox is less startling when stated thus: a journey takes the maximum
elapsed time if no force is expended. The time-stopping oscillations above have
impractically big accelerations, perhaps these should be banned too by a new

decree? We showed in the eighth paragraph of the text d2r
ds2 ×

dr
ds = 0, i.e., the

rate of change of the absolute velocity dr
ds =

−→
0b′ is constantly orthogonal to it

with respect to the quadratic form τ2. That is, if we draw an arrow parallel

and equal in length to d2r
ds2 from b′, then it is contained in the euclidean space

t′ = 1. It seems reasonable to us that this arrow should be confined to a ball
of a prescribed radius around b′. Which radius, by changing units, we can take

once again to be c itself. So, we can decree that the absolute acceleration d2r
ds2

should always remain in the balls B′. Under this decree, there is a positive lower
limit on the elapsed times of journeys between two events.

18. In the sixth paragraph of the text we measured vectors parallel to lines
cutting the boundary twice by applying τ∗ :=

√
−c2τ2: it too does not obey the

triangle inequality. If P and Q are two points on any such line, and we draw
through them, in the plane containing 0, lines parallel to the two boundary rays,
then a path PRQ in this parallelogram and close to its boundary has in fact an
arbitrarily small τ∗(PR) + τ∗(RQ) < τ∗(PQ). However, τ∗ on vectors lying in
any ball B′ gives their euclidean length, for −c2τ2(t′;x′) = −c2t′.t′+x′.x′ if one
uses components parallel to the time and the euclidean space of S′. This is the
relative speed—always less than 2c—between observers as observed by S′, and
this distance between rays is invariant under reflections of the cone preserving
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S′. It is τ∗ on point-pairs of that hidden space τ = 1 enveloped by all these
balls, that is τ∗(b′b′′), that gave us an observer-independent and fully invariant

proper speed between observers; and inf
∫ b′′
b′
τ∗(dr) over all curves on τ = 1 from

b′ to b′′ gives – note 6 – an invariant distance between rays obeying the triangle
inequality. In note 14 we showed that this must be Cayley’s distance: if S′′ has

speed v as observed by S′, then inf
∫ b′′
b′
τ∗(dr) = c

2 log( c+vc−v ), with inf attained
on and only on the curve from b′ to b′′ on τ = 1 and span{S′, S′′}. To double-
check this let c

2 log( c+vc−v ) = cθ, then v = c tanh θ, but span{S′, S′′} ∩ {τ = 1}
has in the coordinates (t′, x′) of S′ the cartesian equation −c2t′2 +x′2 = −c2 or

parametric equations t′ = cosh θ, x′ = c sinh θ, so over this curve
∫ b′′
b′
τ∗(dr) =∫ θ

0

√
−c2(dt′)2 + (dx′)2 = cθ. Also, the retraction P = (t′;x′) 7→ (t′, ‖x′‖) = P

of the vector space on the half-plane x′ ≥ 0 of span{S′, S′′} preserves τ = 1
and, for any point-pair on it, since ‖x′(PQ)‖ ≥ |‖x′(P ) − ‖x′(Q)‖|, we have
τ∗(PQ) ≥ τ∗(PQ), with equality iff x′(P ) or x′(Q) is a non-negative multiple

of the other. Hence
∫ b′′
b′
τ∗(dr) ≥

∫ b′′
b′
τ∗(dr) for any r(u) on τ = 1 from b′ to

b′′ and its retraction r(u), with equality iff r(u) = r(u)∀u. q.e.d. Here of course,

following Riemann,
∫ b′′
b′
τ∗(dr) := lim[τ∗(P0P1) + τ∗(P1P2) + · · ·+ τ∗(Pk−1Pk)],

as one takes more and more closely spaced points b′ = P0, P1, . . . , Pk = b′′ in
order on r(u). For the minimizing curve r(θ), which is on the plane through 0,
τ∗(PiPi+1) = c

√
2 cosh(θi+1 − θi)− 2 > c(θi+1 − θi), so now its riemann sums

are bigger than the integral, but steadily decrease to it under refinement.
19. To elaborate on note 7 we’ll switch to (t1;x1)?(t1;x2) = −c2t1t2+x1.x2,

the bilinear form associated to −c2τ2. So, if r(s) is any smooth à priori motion
parametrized by elapsed time and u(s) = dr

ds is its unit tangent vector field –
note 15 – then u(s) ? u(s) = −c2. The ?-orthogonal complement of u(s) is the
euclidean space of the parallel galilean observer and on it our bilinear form co-
incides with its dot product. So one has moving frames {u(s); e1(s), . . . , en(s)}
of smooth vector fields along the motion such that ei(s) ? ej(s) = δij and
u(s) ? ei(s) = 0. An à priori motion is a parallel pencil of directed and strictly
increasing arcs – note 13 – in the cone. By perturbing such an arc, in the
interior of the smooth manifold a ≤ τ ≤ b on whose boundary its end points
lie, we can replace it by another which is lipschitz close to it, and which is not
only smooth but also generic, i.e., its first n+ 1 derivatives are always linearly
independent. A smooth generic motions has a frenet frame : each unit vector

ei(s), 1 ≤ i ≤ n, is obtained by multiplying the component of di+1r
dsi+1 orthogo-

nal to span{u(s), e1(s), . . . , ei−1(s)} with the reciprocal of its nonzero length
κi(s). Since adding a vector does not change derivatives these curvatures κi(s)
are well-defined, a parallel arc is also generic with the same elapsed times and
curvatures at its corresponding points. Moreover, two smooth generic motions
are related by a finite sequence of linear reflections of the cone if and only if
they have the same curvature functions κi(s), 1 ≤ i ≤ n. Any linear transfor-
mation L of the cone preserves τ and ? and maps a smooth generic motion onto
another whose derivatives are the images under L of its derivatives; this shows
‘only if’. For ‘if’ represent the two motions by arcs whose initial points are on
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rays parallel to their initial unit tangent vectors, and then slide one of these
arcs along this ray so that τ has the same value on both initial points. Now
apply the linear reflection of the cone interchanging these two rays to one of the
arcs to get two arcs with the same initial point and the same u(0) along the
ray through this point. Finally, by applying to one of the arcs the orthogonal
transformation of this observer which throws the initial unit vectors ei(0) of this
arc onto those of the other we are reduced to showing that, there exists a unique
smooth generic arc parametrized by elapsed time with a given initial frenet frame
{u(0); e1(0), . . . , en(0)} and given curvature functions κi(s). For this we’ll need
the frenet equations : du

ds = k1(s)e1(s), dei

ds = ki+1(s)ei+1(s) − ki(s)ei−1(s) for

1 ≤ i < n and den

ds = −kn(s)en−1(s), where k1(s) = κ1(s), e0(s) = u(s) and

ki+1(s) = κi+1(s)
κi(s)

. The first equation is ‘what gave E = mc2’, viz., d
2r
ds2 ?

dr
ds = 0,

i.e., derivative of u(s) ? u(s) is zero, i.e., u(s) ? u(s) is constant. Likewise

ei(s) = 1
κi(s)

di+1r
dsi+1 + lower order terms, has derivative 1

κi(s)
di+2r
dsi+2 + lower order

terms, which for 1 ≤ i < n is equal to κi+1(s)
κi(s)

ei+1(s) + a linear combination of

ej(s) with j ≤ i only, while for i = n even the leading term is missing. Now

use dei

ds ? u(s) + du
ds ? ei(s) = 0 and dei

ds ? ej(s) +
dej

ds ? ei(s) = 0 – these express
the constancy of ei(s) ?u(s) and ei(s) ? ej(s) – to obtain the other n equations.
These n + 1 equations can be written more compactly as the matrix equation,
dU
ds = K(s)U(s), where U(s) is the square matrix of size n+ 1 with row vectors
u(s), e1(s), . . . , en(s), and K(s) is the skewsymmetric matrix of this size whose
only nonzero entries are k1(s), . . . , kn(s) immediately above the main diagonal,
and their negatives below it. Using the existence and uniqueness theorem for
linear ODE’s, this equation has one and only one solution U(s) with initial value
U(0), and its first row u(s) determines the motion r(s) = r(0)+

∫ s
0
u(s)ds. This

solution U(s) is not in general given by U(s)U(0)−1 = exp
∫ s
0
K(s)ds but this

formula is true if the curvatures are constant. However, any n smooth positive
functions can be realized as the curvatures of a smooth generic motion, unless
some new decree – note 17 – on acceleration and higher derivatives is in force. À
priori motions also contain another open dense set, of piecewise linear motions
with vertices in general position, and, there is a similar classification of generic
p.l. motions. This frenet theory is akin to Kalai’s algebraic shifting, a simple
but surprisingly useful idea, over which I had mulled for long in the 1990’s, but
never quite managed to grasp it to my satisfaction ...

20. From the geographical distribution of some traits in the mitochondrial
DNA sequence it has been deduced that, all women are the iterated daughters of
just one, who lived in Africa 150,000 years ago! So once upon a time, whatever
mathematics there was, was in Africa only. The recorded history of our subject is
shorter, but Africa looms large in it too, in particular, the school of mathematics
that flourished in Alexandria—for more than six hundred years!—from Euclid
to Pappus. Practically everything above is rooted in those books of the former,
and the invariance of the biratio – see note 14 – is only one of the many things
about projective geometry that can be found in the prolific writings of the latter.
The log put by Cayley before it merely converted this multiplicative distance
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into an additive one, and may even turn out to be a retrograde step, when we
switch to other fields to understand the galois symmetries alluded to in notes
1 and 3. The sine law for triangles, and much else from plane and spherical
trigonometry, was known to Ptolemy if not Heron, both of Alexandria. Also,
the latter knew that light travels so that minimum time is taken, and had used
this to prove the isoperimetric inequality : in fact you’ll recall that he once gave
a colloquium talk (!) on this very topic even in imperial Rome, see Extracts
from my Notebooks (2008). Mathematics teaches us humility : much repetition
and reworking, sometimes stretching over centuries, is often needed before a key,
but in hindsight obvious, idea sinks in. It is then mostly a matter of personal
choice as to which mathematician, or a set of mathematicians, one wants to
credit with this idea. Though the definition of ‘his’ distance is all there in a
rambling 1859 paper of Cayley’s, the crisp 2-line format owes much to Beltrami
and Klein, and one presumes that during these years it became ‘folklore’ that it
assigns a length to the segments of any bounded open Ωn, but this came out only
when a letter from Hilbert to Klein was published in 1895. Hilbert was trying to
make Euclid’s formal presentation of geometry more rigorous, and he tells Klein
excitedly that there is a bounded open convex set—to wit the shaded region in
Figure 4—with more than one geodesic between two points! Cayley’s—or if
you prefer Pappus’s or Lobatchevsky’s or Riemann’s or Beltrami’s or Klein’s or
Hilbert’s ...—distance breathes life into all the ‘dime-a-dozen’ geometries that
we mentioned at the very outset, and then again in note 1. Some more water
has flown north out of Africa past Alexandria since Hilbert included in his
famous list of problems two that were closely related to this letter. So much
more is known now, for example, Benoist has characterized those convex Ωn

whose dime-a-dozen geometry is hyperbolic in the sense of Gromov. But much
still remains to be done, even for convex polytopes ... Moreover, each of these
geometries comes with a concomitant linearization or relativity theory. Indeed,
the definition of an unparametrized cartesian absolute motion is already clear
from note 13, and absolute space can be defined once again to be the envelope of
all the images of Ωn under the—now possibly very few—linear symmetries of its
cone, so absolute time, et cetera. The paucity of symmetries can be converted
from a handicap to a boon, for example, one can focus better on some subgroups
of G by replacing the ball itself by a symmetric polytope, and it seems galois
symmetries will make up for some loss of symmetry too ...

K S Sarkaria

(contd.)
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