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Abstract. We give a minimal triangulationη: S3
12→ S2

4 of the Hopf maph: S3→ S2 and use it to
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1. Introduction

As is well known, any smooth map of constant rank between two closed smooth
manifolds istriangulable, i.e., it is, up to homeomorphisms, the geometrical real-
ization of some simplicial map between two finite simplicial complexes. However,
it is usually a hard problem to determinethe least number of verticesrequired for
such a triangulation. In this note we shall describe (Section 2) a simplicial map
η: S3

12 → S2
4 from a 12-vertex 3-sphereS3

12, onto the 4-vertex 2-sphereS2
4, which

triangulates the Hopf maph: S3→ S2 (Section 3) with the least number of vertices.
Another description ofη is given in Section 4. As an application of this minimal
simplicial Hopf map, the first author found a new construction (Section 5) of the 9-
vertex complex projective plane. This 9-vertex triangulation ofCP 2 was originally
discovered via a computer search by Kühnel in 1980 and an interesting account of
it is given in Kühnel–Banchoff [1] and Bagchi–Datta [2].

2. Definition of η: S3
12→S2

4

Let S2
4 denote all proper faces of the tetrahedron ABCD. The simplicial complex

S3
12 is the union of two solid tori having a common boundary. One of these – the

pre-image underη of the triangle ABC ofS2
4 – is the solid 9-vertex torusM3

9 shown
in Figure 1(b) below. Its boundary is the 9-vertex 2-torusT 2

9 shown in Figure 1(a).
The solid torusN3

12 – the pre-image underη of S2
4\int. (ABC) – has 12-vertices.

Its boundary is the 9-vertex 2-torus of Figure 2(a) which is isomorphic and will be
∗ Research work of the first author is supported by UGC, India.
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Figure 1.

identified withT 2
9 under the isomorphism provided by the indicated vertex label-

ing (note that the previously slanting circles I and II of Figure 1(a) have become
horizontal). This solid torusN3

12 is the union of two 3-balls V and W shown in
Figure 2(b).

The boundary 2-spheres of these balls are made up of two cylinders ofT 2
9

bounded by I and II, capped by the 2-disks obtained by coning overD0 andD1

respectively. Note that one of these balls is triangulated as a cone over a boundary
vertexD1, while the second is a cone over an interior vertexD2. The simplicial
mapη: S3

12→ S2
4 is well defined because underAi → A, Bi → B, Ci → C and

Di → D ∀i ∈ Z/3, each simplex ofS3
12 gets mapped to a simplex ofS2

4.

3. Hopf Map h: S3→S2

We recall that, if one thinks ofS3 as a unit sphere ofC2, and ofS2 as the extended
complex planêC = C ∪ {∞}, then the Hopf map is defined byh(z1, z2) = z1/z2.

Let D2 = {u ∈ C:|u| 6 1} andS1 = ∂D2. Then(u, z) → (1 + |u|2)−1/2 ·
(uz, z) gives a homeomorphismD2×S1→ h−1(D2) under which the fibers of the
projection mapD2× S1→ D2 are mapped onto those of the Hopf map. Likewise
(u, z)→ (1+|u|2)−1/2 ·(z, ūz) provide us with a fiber preserving homeomorphism
D2× S1→ h−1(Ĉ\int.D2). Hence, up to homeomorphism, the Hopf map is same
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Figure 2.

as the map obtained from two copies of the projection mapD2 × S1 → D2, by
identifying the two boundary toriT 2 = S1 × S1 by means of fiber preserving
homeomorphism(u, z)→ (u, ūz).

This self-homeomorphism ofT 2 = R2/Z2 is induced by the linear automor-

phism ofR2 provided by the unimodular matrix
[

1
−1

0
1

]
. So it is the geometrical

realization of the simplicial isomorphism, which we had used to identify the toral
triangulation of Figure 1(a) with that of Figure 2(a). On the other hand Figures 1(b)
and 2(b) gave us triangulations of two copies of the projection mapD2 × S1 →
D2(≈ ABC). Soη: S3

12→ S2
4 triangulatesh: S3→ S2.

4. Hopf Map and Villarceau Circles [4]

Let d be the metric onS3 defined asd(u, v) = cos−1〈u, v〉∀u, v ∈ S3 (here by
the symbol〈u, v〉 we mean inner product or scalar product of the position vectors
of u andv). In other wordsd(u, v) is the length of the shorter arc (betweenu and
v) of the great circle ofS3 throughu andv. For any great circleC of S3 define
d(u,C) = inf{d(u, v) for all v ∈ C} and for any two great circlesC1 andC2
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Figure 3.

defined(C1, C2) = inf{d(u,C2) for all u ∈ C1}. Two great circlesC1 andC2 of
S3 are called Clifford parallel ifd(u,C2) = d(v, C2) for all u, v ∈ C1. It can be
easily seen that any two fibers of the Hopf maph: S3 → S2 = Ĉ are Clifford
parallel to each other. This follows from the fact that the action ofS1 on S3 i.e.
λ · (z1, z2) = (λz1, λz2)∀λ ∈ S1 is isometric and transitive on each fiber. For any
given fiberC = h−1(0) (say) and for eachα ∈ [0, π/2] define

Cα = {u ∈ S3|d(u,C) = α}.
ClearlyC0 = C andCπ/2 = {u ∈ S3| cos−1〈u, v〉 = π/2, wherev ∈ C is such

thatd(u, v) = d(u,C)} i.e.Cπ/2 is the set of all points ofS3 whose position vectors
are orthogonal to the plane containing the circleC. So we can writeCπ/2 = C⊥.

To showCα is topologicallyS1× S1 for eachα ∈ (0, π/2).
For anyv ∈ C the set6 = {u ∈ S3|d(u, v) = α} is a small 2-sphere inS3 with

centrev and radiusα. Note that only those points of6 which are also the points of
the plane containing the circleC⊥, lie inCα. But the points that are common to both
6 and the plane containing the circleC⊥ form a small circle inS3 (a stereographic
projectionp of this small circle, inR3, is shown in Figure 3).

It is clear thatCα is the surface obtained by revolving this small circle (by
keeping its center atC) aboutC⊥. So it is topologicallyS1× S1.

Villarceau circles
Through eachm = (z1, z2) ∈ Cα there are two great circles (ofS3) (i) = {(λz1,
λz2)∀λ ∈ S1} and(ii) = {(λz1, λ̄z2)∀λ ∈ S1}, which are Clifford parallel toC.
This shows that the relation of Clifford parallelism is not a transitive relation. Now
we can draw four families of circles onp(Cα), (1) usual meridians and parallels, (2)
the image underp of two kinds (i.e. (i) and (ii)) of Clifford parallels toC contained
in Cα. The last two families are calledVillarceau circles. In Figure 4, Villarceau
circles of only one kind are drawn overp(Cα) for someα.
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Figure 4.

Figure 5. (From [4], Vol. II, p. 305.)

Decomposition ofS3 into two solid tori
By fixing someα sayπ/4 we can express ourS3 as union of two solid tori41 =
∪α∈[0,π/4]Cα and42 = ∪α∈[π/4,π/2]Cα. The two tori are glued together at their
common boundary along the Villarceau circles. Asα varies from 0 toπ/2 we get
the following picture of the stereographic projection ofS3 in R3. (see Figure 5)

Villarceau triangles
The following picture shows the trianglesη−1(A), η−1(B) andη−1(C) ofM3

9 ⊂ S3
12

linking each other inR3. They triangulate three Villarceau circles onp(Cπ/4), and
the fourth triangleη−1(D), which links them all, triangulatesC⊥. We remark that
this is a nonlinear imbeding ofM3

9 in R3: the edges A0C1, A2B1 and B0C2 (not
drawn in Figure 6) bend when they cross the line segments A1B2, B2C0 and C0A1

respectively (these line segments are not edges ofM3
9).



110 K. V. MADAHAR AND K. S. SARKARIA

Figure 6.

In the next section we shall construct the triangulation of the complex projective
plane. The construction is the simplicial analogue of the well known fact thatCP 2

can be obtained by identifying the boundary of a 4-ball withS2 under the Hopf
maph: S3→ S2.

5. Construction of the 4-BallD4
17

We divide ourS3
12 into five 3-cells31,32,33,34 and35 as shown in Figure 7.

The cell31 is generated by the 3-simplices{A0B0B1C1, A0B0C0C1, A0A1B1C1,
B0B1C1D1, B0C0C1D2, A0A1C1D2, A0C0C1D2, B0C1D1D2} and the simplices of
32 and33 can be obtained from these by using the permutations(Ai Bi+1 Ci+2)

∀i ∈ Z/3. The 3-simplices of34 and35 are{A0B0B1D1, A0B1D0D1, B1C1C2D1,
B1C2D0D1, A0A2C2D1, A0C2D0D1} and {A0B1D0D2, A0A1B1D2, B1C2D0D2,
B1B2C2D2, A0C2D0D2, A0C0C2D2} respectively.

Now take five new vertices 1, 2, 3, 4, 5 and consider the simplicial complexD4
17

generated by all 4-simplices of the typeλ ∗ θ , whereλ is a simplex ofS3
12 andθ ⊆

{1,2,3,4,5} is defined as{i:|λ| ⊂ |3i |}. Here we take the empty set∅ as a simplex
of S3

12 so∅∗12345= 12345 is a simplex ofD4
17. Note thatD4

17 is subdivision of the
ten vertex 4-ball obtained by deleting the interior of the 4-simplex A0B1C2D1D2

from the hyperoctahedral triangulation{C2,1} ∗ {A0,2} ∗ {B1,3} ∗ {D2,4} ∗ {D1,5}
of S4.
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Figure 7.

Our 4-ballD4
17 contains eighty-eight 4-simplices; thirty-two of them are listed

below and remaining fifty-six simplices can be obtained from these by using the
permutations (123)(Ai Bi+1 Ci+2) ∀i ∈ Z/3.

1A0B0B1C1 1A0C0C1D2 13A0B0C0 14A0B0B1 234A2D1 1345A0

1A0B0C0C1 1B0C1D1D2 13B0D1D2 15A0A1B1 123D1D2 1234D1

1A0A1B1C1 4A0B0B1D1 23A2B2D2 15A0A1D2 125A1B1 1235D2

1B0B1C1D1 4A0B1D0D1 25A1B1D2 34A0A2D1 134A0B0 12345

1B0C0C1D2 5A0B1D0D2 45A0B1D0 145A0B1

1A0A1C1D2 5A0A1B1D2 34A0B0D1 125A1D2

Construction ofCP 2
9 . The 9-vertex simplicial complex obtained fromD4

17 by
identifying verticesAi → A, Bi → B, Ci → C andDi → D ∀i ∈ Z/3, has
following 4-simplices. This simplicial complex isCP 2

9 because by replacing the
vertices 1, 2, 3, 4, 5, A, B, C, D by respectively 1, 2, 3, 8, 7, 4, 6, 5, 9 we see that
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Figure 8.

the following list coincides with the list of top simplices ofCP 2
9 given on page 15

of Kühnel–Banchoff [1].

Simplices ofCP 2
9

12ABC 45ACD 12345 13BCD 34ABD 235BD

23ABC 45BCD 1234D 35BCD 134BD 23ABD

31ABC 45ABD 1235D 14BCD 234AD 235BC

1345A 125AB 15ACD 135AC 145AB 125AD

1245B 12ACD 345AC 25ABD 135CD 134AB

2345C 124BC 24ACD 245BC 124CD 234AC

6. Remarks

(a)Minimality ofη: S3
12→ S2

4. Note that any map in the homotopy class ofh: S3→
S2 is a fibration and we know that in a fibration all fibers are of same homotopy
type. As one needs at least 4-vertices to triangulateS2 and at least 3-vertices to
triangulate the circular fiber over each of the four vertices so we need at least
12-vertices in the triangulation ofS3 in order to get a fibration.

(b) We show thatS3
12 can be obtained by subdividing theBrückner sphere

(Figure 8) as explained.
Subdivision of Figure1. Cone the boundary 2-spheres of the three, 3-cells (i)

A0B0D2C1 ∪ A0B0D2C2 (ii) B1C1D2A0 ∪ B1C1D2A2 (iii) A 2C2D2B0 ∪ A2C2D2B1

over three new vertices C0, A1 and B2, which have been placed in the interior
of these 3-cells, respectively. Now insert a vertex D0 in the 1-simplex D1D2 and
cone over this vertex by the boundary of the 3-cell generated by{A0B1D1D2 ∪
B1C2D1D2 ∪ C2A0D1D2}.
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Subdivision of Figure2. JoinD1 and D2 to replace two 3-simplices A2B0C1D1

and A2B0C1D2 by three new 3-simplices A2B0D1D2, B0C1D1D2, C1A2D1D2. Note
that simplices in the subdivision of 1 and 2 are same as the simplices inS3

12.
(c) Any S1 bundleδ:E3→ S2 is obtained from the two copies of the projection

D2 × S1 → D2 by identifying the boundary toriT 2 = R2/Z2 under
[
±1
d

0
±1

]
.

with -d being thedegree of the classifying mapS1 → S1 of this bundle: cf.
Steenrod [3], Section 18. Triangulations analogous to one above seem to give some
useful upper bounds forn(δ), the least number of vertices required to triangulate
δ. We note thatn(δ)→∞ asd →±∞.

(d) However there seems to be no obvious ways of triangulating the bundle
structure of a nontrivialδ by using only finitely many vertices. For example sup-
poseK triangulatesS2, and that there is given, for each ordered pair(σ, θ) of
2-simplices ofK which share an edge, a rotationgσθ of a fixed polygonP (i.e. a
fixed triangulation ofS1) such that (a)(gσθ )−1 = gθσ and (b)gσ1σ2 ◦ gσ2σ3 ◦ · · · ◦
gσn−1σn = 1 as one goes cyclically around any vertex ofK. We can now patch
together the projectionsσ × P → σ by using thesegσθ ’s, but this only gives –
becauseS2 is simply connected while the structure group Rot. (P) is finite – the
trivial bundleS2× S1→ S1: cf. Steenrod [3] Section 13.

(e) The mapη is by no means the only 12-vertex simplicial map in thehomotopy
classof h, e.g. if we alter Figure 1(a) so that all its oblique edges become paral-
lel, then the same method gives another. However the new map won’t be in the
homeomorphism classof h because it transforms a tetrahedron of the new solid 9-
vertex torus to an edge ofS2

4. We recall that [h] generates the infinite cyclic group
π3(S

2) of homotopy classes [f ] of mapsf : S3 → S2, and that if[f ] = t · [h],
thent is calledHopf invariantof f . Analogous triangulations can be used to esti-
mate from above the least numbern[f ] of vertices required to obtain a simplicial
representative of[f ].

(f) It seems that up to simplicial homeomorphismη is the unique12-vertex
triangulation (of the homeomorphism class) ofh. As far as the automorphism group
Aut. (S3

12) is concerned, it is cyclic of order three, viz. that generated by Ai → Bi+1,
Bi → Ci+1, Ci → Ai+1 and Di → Di ∀i ∈ Z/3. OnM3

9 this automorphism
coincides with the order 3 homeomorphism(z1, z2) → (ei2π/3 · z1, ei4π/3 · z2).
However this freeZ/3 - action differs from the simplicial action – which keeps the
fiberh−1(D) fixed – onS3

12\M3
9.

(g) We note that the quotient mapD4
17 → CP 2

9 not only identifies points of
the boundingS3 under the Hopf map, but also leads to some additional internal
identifications. Nevertheless the quotient space is stillCP 2! Also it is not known
whether there is any other simplicial 4-ball with boundaryS3

12 which givesCP 2
9 in

the same way.
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