
Extracts from my Notebooks

K. S. Sarkaria

§1. Chauhan quadrilaterals? Our house is being renovated these days.
Our architect, Sandeep, has designed its new lounge as a non-rectangular quadri-
lateral. I noticed that, while calculating the steel reinforcement to be put in its
roof and supporting beams, our structural engineer, Mr. C. S. Chauhan, had
computed its area to be the product of the averages of its opposite sides. Which
was good enough, because this particular quadrilateral – see Figure 0 – is not
far from a rectangle.1 However, in general – take, for example, a parallelogram
with a very obtuse angle – this product of averages can be very different. So I
started wondering if quadrilaterals, for which Chauhan’s method gives the ex-
act area, are necessarily rectangles? I suspected that the answer was yes, and
e-mailed this problem to Dinesh, Keerti, and Vibhor on March 10. On March
13, I told them that I now had a roundabout proof – see § 2 for this – which
was however distinctly post-Euclid, so I would reveal its details later, hoping
that in the meantime they would find solutions that were more Euclidean.

Figure 0

§2. My proof. Consider first the case of a quadrilateral – with successive
sides of lengths a, b, c and d – which is cyclic. Then its area is given by Brah-
magupta’s formula,

√
(s− a)(s− b)(s− c)(s− d). Here, s is its semi-perimeter,

so (s− b)(s−d) = (a−b+c+d)(a+b+c−d)
4 = (a+c)2−(b−d)2

4 ≤ (a+c)2

4 with equality iff

b = d; likewise, (s− a)(s− c) ≤ (b+d)2

4 with equality iff a = c. Therefore area is
less than or equal to (a+c)(b+d)

4 with equality iff the opposite sides of the cyclic
quadrilateral have equal lengths, that is, if and only if it is a rectangle. For the
general case I now proved the following.

(2.1) A quadrilateral, with sides AB,BC, CD, DA of four prescribed positive
lengths, encloses the maximum area if and only if it is cyclic.

If A = C and B = D, then the four sides have the same length, and ABCD
unfolds to a square. So assume that a pair of opposite vertices, say A and C,
are distinct. The line AC bounds two closed half planes, ‘lower’ and ‘upper’.
By reflecting B or D, if need be, in AC – this does not decrease area – we can
assume that B is in the lower, and D in the upper, closed half plane.

1Moreover, the fact the computed value was somewhat higher than the actual area, was
all to the good from the viewpoint of engineering safety.
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Figure 1

Let µ = max( AC
AB+BC , AC

CD+DA ) and ν = min( AC
|AB−BC| ,

AC
|CD−DA| ); so 0 < µ ≤

1 and 1 ≤ ν ≤ ∞. For any real t such that µ ≤ t ≤ ν, one has unique points Bt

and Dt – see Figure 1 – in the lower and upper closed half planes respectively,
such that ABt = t.AB, BtC = t.BC and CDt = t.CD, DtA = t.DA. So Bt is
on the lower half of the circle formed by all points whose distances from A and
C are in the ratio AB/BC – if AB = BC this ‘circle’ is the bisector of AC –
that is, the circle having as diameter the portion of the line AC intercepted by
the internal and external bisectors of ∠ABC. Likewise, Dt is on the upper half
of the circle of points whose distances from A and C are in the ratio AD/DC.
Thus, as t increases from µ towards ν, (Bt, Dt) describes a pair of directed arcs
lying on portions of these two semi-circles.

Rigid case, µ = ν. Since t ≡ 1, the arc pair (Bt, Dt) reduces to just the
point pair (B, D). This happens iff the vertices A, B, C and D occur in order
on a directed ‘circle through infinity’, i.e, a straight line. For these ‘degenerate’
cyclic quadrilaterals, of each pair of opposite angles, one is 0 and the other is
π; equivalently, one side is the sum of the other three sides (the reason why
Brahmagupta’s formula gives us the correct area 0).

Flexible cases, µ < ν. As t increases, the sum of the monotonically decreasing
angles θ(t) = ∠ABtC and φ(t) = ∠CDtA goes, from a value bigger than π at
µ, to values less than π near ν. For, Bµ or Dµ or both are on the line AC,
and then necessarily between A and C: so π < θ(µ) + φ(µ) ≤ 2π. Likewise,
if ν < ∞, Bν or Dν or both are on the line AC, and then necessarily outside
the segment AC: so 0 ≤ θ(ν) + φ(ν) < π. If ν = ∞, i.e., if AB = BC and
CD = DA, then Bt and Dt recede to infinity on the lower and upper half of
the right bisector of AC: so θ(t) + φ(t) → 0+ as t →∞.

It follows that there exists a unique τ between µ and ν such that θ(τ)+φ(τ) =
π. Let Qt be the quadrilateral similar to ABtCDt with sides having the original
four lengths, obtained by dilating it by 1/t with respect to the mid-point of AC.
As t runs from 1 to τ , Qt describes a path of quadrilaterals from ABCD to a
cyclic quadrilateral Qτ with the same four sides. So it shall suffice to verify
that the area of Qt is strictly increasing as t increases from µ to τ , and strictly
decreasing as t increases further from τ towards ν.

One has Area(Qt) = 1
t2 Area(ABtCDt) = 1

2 (AB.BC. sin θ + CD.DA. sin φ).
So its derivative equals 1

2 (AB.BC. cos θ.dθ/dt + CD.DA cos φ.dφ/dt). Here

dθ/dt can be found from cos θ = t2(AB)2+t2(BC)2−(AC)2

2(tAB)(tBC) , which gives− sin θ.dθ/dt

= (AC)2

t3AB.BC ; likewise − sin φ.dφ/dt = (AC)2

t3CD.DA . So the derivative of Area(Qt) is

equal to − (AC)2

2t3 ( cos θ
sin θ + cos φ

sin φ ) = − (AC)2

2t3
sin(θ+φ)
sin θ sin φ . Therefore it is zero only when

θ + φ = 0, π or 2π. Angle sum is 0, resp. 2π, only at t = ν, resp. µ, and only
when Bν , Dν , resp. Bµ, Dµ, are both on the line AC; then Area(Qt) attains its
minimum value 0 at t = ν, resp. µ. When θ + φ = π, that is, at t = τ , Area(Qt)
attains its maximum value. This follows because its derivative is positive iff
2π > θ + φ > π, that is, as t increases to τ ; and negative iff 0 < θ + φ < π, that
is, as t increases further from τ towards ν. q.e.d.
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So, my proof used: (1) (a+c)(b+d)
4 ≥

√
(s− a)(s− b)(s− c)(s− d), with

equality iff a = c, b = d, and (2) a converse of Brahmagupta’s formula.

(2.2) For any quadrilateral,
√

(s− a)(s− b)(s− c)(s− d) is at least as big
as its area, and is equal to the area if and only if it is cyclic.

This was in fact my original formulation of (2.1), but Brahmagupta’s formula
seemed, after a while, to be only a pretty but avoidable frill in the present
context, while the wording (2.1) has the merit of suggesting, besides (2.2), many
other isoparametric results. I was busy working out some of these – see §5 –
when I received, on March 15, the following delightfully brief solution [1] of the
original problem, which was decidedly pre-Euclid!

§3. Dinesh’s proof. The product of two sides of a triangle is at least
twice as big as its area, with equality if and only if the included angle is a right
angle. So, (AB.BC−24ABC)+(BC.CD−24BCD)+(CD.DA−24CDA)+
(DA.AB − 24DAB) ≥ 0 — i.e., (AB + CD)(BC + DA) ≥ 4.Area(ABCD) —
with equality if and only if ABCD is a rectangle. q.e.d.

As I had by now refreshed my memory on Dido’s problem from [2], I soon
realized that the point used above, namely that, the area of a triangle PQR with
sides PQ and QR of prescribed lengths is maximum iff ∠PQR is a right angle,
coincides with the central idea in Steiner’s clever proof of the Isoperimetric
Inequality. I’ll return to this later in §7; now, I’ll present another gem of a
solution [3], of the original problem, that I received on March 19-20.

§4. Vibhor’s proof. The signed area of ABCD is the sum of those of the
triangles ABC and ACD, i.e., 1

2

−→
AC×−−→BC + 1

2

−→
AC×−−→CD, i.e., 1

2

−→
AC×−−→BD. Thus

it is the same for any quadrilateral AB′CD′ obtained from ABCD by sliding
a diagonal vector, say −−→BD, to a new position

−−−→
B′D′ with respect to the other

diagonal vector −→AC. If in the new position the diagonals bisect each other, i.e.,
if AB′CD′ is a parallelogram, then −−→CD +−−→BA = (

−−→
CD′+

−−→
D′D) + (

−−→
BB′+

−−→
B′A) =

2
−−→
B′A, because

−−→
CD′ =

−−→
B′A and

−−→
D′D =

−−→
B′B. Using the triangle inequality we

get CD + BA ≥ 2B′A; likewise, DA + CB ≥ 2CB′. Both are equalities only
if CD‖BA and DA‖CB, i.e., if the given ABCD was already a parallelogram,
and no sliding was needed. Otherwise, the product of the averages of opposite
pairs of sides is lesser for the parallelogram. Yet, unless the parallelogram is a
rectangle, even this new product exceeds the area. q.e.d.

Figure 2

Here signed area is positive – i.e., 1
2

−→
AC×−−→BD points towards the reader – or

negative, depending on whether it lies to the left or right as we walk once around
ABCD in this sense. For some positions – see Figure 2 – of the sliding diagonal
vector, the new quadrilateral is not only non-convex, but even self-intersecting;
then it is the algebraical sum of its enclosed positive and negative areas which
equals 1

2

−→
AC ×−−→BD. For the further spin-offs of this proof see §§8, ...
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§5. Isoperimetric Inequality Though my proof of (2.1) was a bit long,
not much more was needed to generalize this result to all polygons.

(5.1) A closed n-gon, with sides A1A2, . . . , AnA1 of n prescribed positive
lengths, encloses the maximum area if and only if it is cyclic.

First we show the existence of an area maximizing n-gon. Fix A1, and note
that the (n − 1)-tuples (A2, . . . , An), formed by the remaining vertices, of all
closed n-gons with sides of the prescribed n lengths, determine a bounded and
closed set X ⊂ (R2)n−1. Being a real-valued and continuous function on it, area
must attain its maximum value at some point(s) of this compact space X.2

Such an area maximizing n-gon has to be convex: otherwise, by reflecting a
part of it in a supporting chord, we can increase its area. Moreover, (2.1) tells
us that any four consecutive vertices occur in order on a directed circle (which
may possibly be through infinity, i.e., a straight line). For, if say A1A2A3A4 is
not cyclic, then by replacing it by the cyclic A1A

′
2A

′
3A4 having the same sides,

we get an n-gon A1A
′
2A

′
3A4 . . . An with sides of the same n lengths, but bigger

area. Finally, we note that these directed circles are in fact all the same. For,
the two circles on which A1, A2, A3, A4 and A2, A3, A4, A5 lie are both the same
as the unique circle determined by the three points A2, A3, A4, etc. q.e.d.

Now, by relaxing the constraints on the sides, I was led to the following
further generalization, of which (5.1) corresponds to the special case when the
parts Sα are singletons. Note also that (5.2) generalizes the original problem,
for, applied to the partition {1, 2, 3, 4} = {1, 3}⋃{2, 4}, it tells us that Chauhan
quadrilaterals are necessarily rectangles.

(5.2) For any partition of {1, . . . , n} into disjoint nonempty sets Sα, suppose
there exist closed n-gons A1A2 · · ·AnA1 with average lengths of subsets of sides
{AiAi+1, i ∈ Sα} equal to prescribed positive numbers sα. Then there exists a
cyclic n-gon for which all sides belonging to the same subset have the same length
sα, and the enclosed area is maximized at this, and only this, closed n-gon.

The existence of a maximizing n-gon follows by a compactness argument
(note that we now allow sides to have zero length) similar to the one given
above, and, from (5.1), we already know that this must be cyclic. Since equal
chords subtend equal angles at the center, and the area of a cyclic polygon is
the signed – ‘signed’ is needed here because (at most) one of the chords might
be subtending a reflex angle at the center – sum of the isosceles triangular
areas subtended by its chords at the center, we can, without loss of generality,
assume that each subset {AiAi+1, i ∈ Sα} consists of consecutive sides. If two of
these, say AjAj+1 and Aj+1Aj+2, were to have different lengths, then, replacing
AjAj+1Aj+2 with the isosceles triangle AjA

′
j+1Aj+2 having the same height –

see Figure 3a – keeps the area same, but strictly decreases the average length
of this subset of sides. Then further, by replacing this isosceles triangle by a
bigger isosceles triangle AjAj+1”Aj+2 we can keep all the averages sα same and
strictly increase area. It follows that, for this area maximizing cyclic n-gon,

2For more on the topology of X and other spaces of polygons see § .
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sides belonging to the same subset must have the same length. q.e.d.

Figure 3a Figure 3b

In the above argument – inspired by [2], which I was now re-reading – I’ve
used a result (Figure 3b recalls its elegant proof) from Heron’s lost treatise on
the geometry of mirrors: the shortest path via a mirror between two points is
the one which light takes, i.e., that obeying ‘angle of incidence equals angle of
reflection.’ Thus I’d used calculus only in my proof of (2.1). So, naturally, I
tried to interest Dinesh, Keerti and Vibhor in the problem of finding a nice
geometric proof of (2.1), but this time it was to no avail.

As remarks made in the proof of (5.2) show, the area of a cyclic n-gon is
a symmetric function of n variables, viz., the lengths of its n sides. Heron
(a.k.a. Hero) found the algebraic formula

√
(s(s− a)(s− b)(s− c) for the case

n = 3. About seven centuries later, the next case n = 4 was disposed off by
Brahmagupta’s

√
(s− a)(s− b)(s− c)(s− d). However, as n increases, it soon

becomes very hard to give similar algebraical formulae. Nevertheless, some
amazing results – see § – have been recently obtained.

The case of (5.2) when the partition has only one part goes back at least to
Zenodorus, who lived about three centuries before Heron.

(5.3) A closed n-gon having a prescribed perimeter encloses the maximum
area if and only if it is a regular n-gon (i.e., cyclic with all sides equal).

There is a direct geometric proof of (5.3) in Tikhomirov [2], with existence
of area minimizing n-gon assumed. This gap can be filled as before: our n-gons,
with A1 fixed, form a compact subspace X ⊂ (R2)n−1, viz., that consisting of all
(A2, . . . , An) such that the lengths A1A2, . . . , An−1An, AnA1 are non-negative
with the prescribed sum, and area is a continuous function on X. The argu-
ment used in (5.2) now shows that this area-maximizing n-gon is convex with
equal sides. It remains to prove that all its angles are equal. This Tikhomirov
accomplishes by another clever use of Heron’s mirror theorem.

A straightforward computation shows that if a regular n-gon has perimeter
L, then its area is L2

4π ( π/n
tan(π/n) ). Thus its area is less than L2

4π , the area of a circle
of perimeter L, and approaches this value as n becomes infinite. So, for simple
closed curves, which heuristically are nothing but “polygons with infinitely many
vertices,” (5.3) obviously implies – cf. [2] – the following conclusion.

(5.4) Isoperimetric Inequality. If a simple closed curve has length L, then its
enclosed area is at most L2

4π , the area of a circle of perimeter L.

To firm up our heuristics we need exact definitions, which I’ll now give,
and make some routine verifications, which I’ll omit. A simple closed curve is
a subspace C of the plane which is homeomorphic to the circle. A non self-
intersecting polygon is an example, and for these, the meanings of ‘enclosed’,
‘area’ and ‘perimeter’ are clear enough. For any simple closed curve C, the
Jordan Curve Theorem tells us that R2 \ C has two path components, one of
which is bounded, this is said to be the region enclosed by the curve. Consider
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polygons P whose n(P ) vertices A1, A2, . . . An(P ) occur in (either clockwise or
anticlockwise) order on C. If δ(P ), the maximum length of a side of P , is
sufficiently small, then P has no self-intersections. Thinking of the areas SP

enclosed by these polygons P as suitable approximations, we define the area SC

of the region enclosed by the curve to be their limit as n(P ) approaches infinity
and δ(P ) approaches zero. The standard arguments of integration theory show
that this limit exists, and that this area has the expected properties. Likewise,
the length or perimeter LC of the curve is the limit of the polygonal perimeters
LP as n(P ) approaches infinity and δ(P ) approaches zero. This limit may not
exist, i.e., length is not defined for all simple closed curve. But in (5.4) of course
we are talking of a curve with a well-defined length L. For such curves, which
are often called ‘rectifiable,’ this length has the expected properties.

We’ll now sharpen (5.4) – unlike Tikhomirov [2], most authors refer to this
sharpened result as the “Isoparametric Inequality” – by showing that the circle
is the only area-maximizing curve.

(5.5) If a simple closed curve has length L, its enclosed area is at most L2

4π ,
and this maximum is attained only by the circle of perimeter L.

An area-maximizing curve is convex. Otherwise, by reflecting a portion
in a supporting line, we can get a new simple closed curve having the same
length, and a bigger enclosed region. We assert next that any four points,
A1, A2, A3, A4, taken in order on this curve, must form a cyclic quadrilateral,
i.e., they must occur in order on some circle. For, if A1A2A3A4 is non-cyclic, we
can, as in the proof of (2.1), increase its area by ‘flexing’ it ever so slightly around
its vertices, without changing the lengths of its sides A1A2, A2A3, A3A4, A4A1.
So we can just let the four portions Â1A2, Â2A3, Â3A4, Â4A1 of the convex curve
‘ride’ on these segments to obtain a new simple – for it is easy to verify that
no self-intersections are introduced if the flexion is small enough – closed curve
having the same length as before, but enclosing a bigger area. Finally we note,
as in the proof of (5.1), that all 4-tuples of points on the curve determine the
same circle, i.e. that, the curve must be a circle. q.e.d.

§6. A poetical interlude. Eudoxus had made precise (Dedekind type)
definitions for adding and multiplying segments (real numbers), and Archimedes
worked out with absolute rigour many complicated areas and volumes (integrals)
using exhaustion (limits). So it is not in the least surprising that Archimedes
and Zenodorus had essentially proved the Isoperimetric Inequality, but why on
earth was this result called Dido’s Problem?

It is highly unlikely that Archimedes himself called it by this name. For
Queen Dido, you see, is mostly a love interest in the peregrinations of a Trojan
survivor of the Battle of Troy, whose mythical exploits were invented and set in
immortal verse by a Roman poet, who was still more than two centuries in the
future! So who coined this name and when? Here’s what happened.

The Roman contribution to mathematics is negligible, but it is to their
everlasting credit that they let pockets of Greek mathematics flourish, for a few
centuries more, in some parts of their sprawling empire. Heron was once visiting
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Rome to get funding for that library in Alexandria. When his hosts requested
the distinguished visitor to give a talk on his work, he readily agreed.

Heron was in fact eager to lecture, and share with these hospitable Romans
an uncanny thought that had popped up after his work on mirrors. It seemed
that rays of light could somehow figure out – and that too in advance – the
shortest path to their intended destination! For, how else could one explain
that, of all possible paths, they infallibly took this, and only this, shortest path?
Moreover, basing himself on this purely physical law, he had found a new and
elegant demonstration of a purely geometric theorem, namely, the celebrated
Isoperimetric Inequality of the great Archimedes and Zenodorus.

Heron had no qualms either on account of the language in which he would
be giving his colloquium talk. Why, his knowledge of Latin was better than that
of most Romans! Good enough, for example, to thoroughly relish and savour
the poetry of this Virgil that all of Rome was currently raving about.

However, in the days leading up to the lecture, an element of worry crept into,
and steadily grew, in his conscientious mind. It dawned on him that – excepting,
of course, the two Egyptian post-docs who had so loyally accompanied him in
that trireme across the Mediterranean – there was virtually no one in Rome who
had the background necessary to understand the delicate geometric reasoning
that was the centerpiece of his planned talk.

Heron was not one of those carefree souls, who don’t mind losing their audi-
ence five minutes into a talk. He belonged to that unfortunate minority which
perpetually agonizes about whether they would be understood or not. So he
decided that he needed to lighten up his talk, and somehow connect its subject
matter with something that the Romans were already connected with.

It was then that those verses from Virgil’s “Aeneid” (Book I, lines 365-368)
that he had been reading the night before in bed when he dozed off, floated back
to him; those lines – my poetic translation below was inspired by the translation
into English prose given in [4] – about Dido and others fleeing her tyrant brother
Pygmalion3, the king of Tyre.

Devenere locos, ubi nunc ingentia cernes
Moenia surgentemque novae Karthaginis arcem;
Mercatique solum, facti de nomine Byrsam,
Taurino quantum possent circumdare tergo.

Landed at loci, where now you well perceive,
’Mid its ramparts the citadel of new Carthage rise;
Bought they land, called thereafter the Hide,
Just as much as that of a bull would circumscribe.

This is all that this epic has on this important event. So, naturally, Heron
had to devote the first twenty minutes or so of his talk, “On Dido’s Problem,”
in elaborating how that haloed hide of yore had been carefully cut into thin

3Not the one of Pygmalion and Galatea. These two were transformed in Shaw’s play,
and the movie, My Fair Lady, into Professor Henry Higgins and Eliza Doolittle, respectively.
However, some confusion persists, because Dido is also called Elissa, the wanderer.
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strips, which, joined one after another to make a long string, were then laid on
the ground to form a perfect circle, showing thus that clever Dido knew – even
way back then! – that a circle enclosed the maximum area.

The talk was a roaring success, and Heron got the funding he sought. What
the Romans got from the remaining thirty minutes of his talk is unknown, but
certainly, no evidence of any increased mathematical activity on their part has
survived. However, the two disciples who had witnessed their master’s triumph
in Imperial Rome, took good care that we mathematicians would never ever
forget the intimate link that was pointed out that memorable day between
Queen Dido and the Isoperimetric Inequality.

§7. Steiner’s version. The next result can be proved by applying (5.1) to
a certain closed 2(n− 1)-gon, but § 3 suggests a quick direct proof.

(7.1) A closed n-gon, with n−1 of its sides, say A1A2, . . . , An−1An, of n−1
prescribed positive lengths, encloses the maximum area if and only if it is cyclic,
with the nth side, AnA1, a diameter of the circumscribing circle.

These n-gons with A1 fixed form the compact subspace Y ⊂ (R2)n−1 of all
(A2, . . . , An−1) such that the n− 1 distances A1A2, . . . , An−1An have the n− 1
prescribed values, and area is continuous on Y .4 So an area maximizing n-gon
exists. It is, as before, convex. Further, each angle A1AiAn, 1 < i < n, must be
a right angle. Otherwise, by replacing the triangle A1AiAn by the right-angled
triangle A′1AiA

′
n, with A′1Ai = A1Ai and AiA

′
n = AiAn, we can obtain another

such closed n-gon, with a strictly bigger area. q.e.d.
(7.2) In other words, maximum area is enclosed between a straight line and

a broken line A1A2 · · ·An having n−1 links of prescribed lengths and both ends
on the line, if and only if the vertices occur in order on a semi-circle of diameter
A1An. More generally, an argument similar to that used in (5.2) shows that if
we partition the n−1 links into disjoint subsets, and only constrain the average
length of each part, then the maximizing position is semi-cyclic with links of
each part equal. So, in particular, one has the following.

(7.3) Maximum area is enclosed between a straight line and a broken line
A1A2 · · ·An of a prescribed length with both ends on line iff the vertices occur
in order, at equal distances, on a semi-circle of diameter A1An.

We now move on to Steiner’s version of the Isoparametric Inequality, where
arc means a subset of the plane homeomorphic to [0,1], and since we are speaking
of its length, the arc is understood to be rectifiable.

(7.4) Maximum area is enclosed between a straight line and an arc of length
L with both ends on the line if and only if the arc is a semi-circle.

By (7.3) the area enclosed by a broken line of length L having n − 1 links
and both ends on line is at most L2

2π ( π/2(n−1)
tan(π/2(n−1)) ). Thus it is less than L2

2π ,
the area enclosed by a semi-circle of perimeter L, and approaches this value as

4Y is clearly an (n− 1)-dimensional torus; using this, and some Morse theory, we’ll later
work out the possible topologies of the space X of closed n-gons with prescribed edges.
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n becomes infinite. So, amongst all arcs –“broken lines with infinitely many
vertices” – of length L having ends on line, enclosed area attains its maximum
value when the arc is a semi-circle. Conversely, if this maximum is attained at
arc ÂCB, then ∠ACB is necessarily a right angle. For otherwise, by flexing the
triangle ACB ever so slightly at C – and letting the portions ÂC and ĈB of
the arc ride on the moving segments AC and CB – we can get a new arc that
encloses a strictly bigger area. q.e.d.

In fact, this version is equivalent to (5.4). If possible, suppose there is a
simple closed curve of length 2L, which encloses an area bigger than L2/π.
Without loss of generality we can assume that this curve is convex, for, if need
be, we can look at its convex hull, and magnify it so that the bounding curve
still has length 2L. Now take any two points A on B on this curve which bisect
it in two equal arcs. Then one of these length L arcs, together with the chord
AB, encloses an area bigger than L2/2π, which contradicts (6.4), etc.

Steiner’s version of Dido’s Problem. I’ve a hunch that Jacob S. was led to
(6.4) mulling over the fact that Phoenicians were sea-going people. As such,
they must have built Carthage on the sea. So, assuming its coastline straight
for the sake of simplicity, their Queen Dido must have had that cowhide string
laid, not in a circle as Heron had wrongly assumed, but in a semi-circle.5

§8. Congruent tilings. There is no difficulty in adjusting the proof of
§4 so that it becomes strictly à la Euclid. For example, here is a cutting and
pasting argument, which shows that two copies of a quadrilateral have the same
area as a parallelogram with sides equal and parallel to its diagonals.

Lay the two copies ABCD and A′B′C ′D′ with their diagonals AC and A′C ′

on the same straight line, and with just one common point C = A′. Cut partially
along these diagonals – see Figure 4 – and fully along the other diagonals to snip
off the four triangles {AED, E′C ′D′} and {AEB, E′C ′B′}. It is easily seen that
the first pair can be pasted to make the triangle DCD′, and the second to make
BB′C, so the two quadrilaterals together yield the parallelogram BB′D′D.

As a bonus, this argument also gives the next, and at first flush somewhat
surprising result, which is also depicted in the same figure.

Figure 4

(8.1) The plane can be tiled by congruent copies of any quadrilateral.
For this, lay not two, but an infinite row of tiles, each sharing a vertex

with the previous, and diagonals subdividing a line into equal segments. Then,
starting with each of these, lay a column of tiles with other diagonals on a
line. Now verify – this is the same as the ‘easily seen’ above – that each vacant
quadrilateral is also congruent to the given tile. q.e.d.

5On a more serious note, I recall that Rome had completely destroyed Carthage, and
massacred all Carthagians, more than a century before Virgil wrote his poem. Nevertheless,
hi-tech archeology has managed to uncover some evidence about its layout, so much so that,
fairly detailed maps of Carthage are now posted on the web. These show that it was indeed
on the sea, but its coastline was far from straight, and its terrain far from flat.
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So here was I once again in tilings – where I had been when Mr. Chauhan
had intruded into my thoughts – but this time the above picture prompted me
to look at tilings in a less topological, and a more geometric way. That is,
though I confined myself as before to tilings in which any two tiles intersect in
a (possibly empty) common face, the primary additional requirement now was
that the tiles be geometrically congruent to each other.

As some of my ex-students from Panjab University might tell you6, I have
this thing about an Egyptian called Euclid; in particular that, I used to tell
them that his first two books were aimed at just one big theorem: by cutting
and pasting, an arbitrary polygon can be changed into a square.

So, the mad thought momentarily came to my mind: maybe the plane can
be tiled by congruent copies of any polygon? Certainly, any triangle will do
too, because, putting two congruent triangles together we can make a paral-
lelogram, and any parallelogram tiles. However, sanity was soon restored as
counterexamples were found, and cogitation revealed many obstructions.

In fact, for n ≥ 5, congruent copies of a generic convex n-gon cannot tile
the plane. The sum of the internal angles of a convex n-gon is (n − 2)π, and,
by perturbing slightly, we can also ensure, conversely, that an integral linear
combination of these angles is a multiple of π only if the coefficients are equal.
Congruent copies of such a generic n-gon with n ≥ 5 cannot tile the plane,
because the angles at a vertex of a putative tiling cannot add up to the requisite
value 2π. Indeed, for n ≥ 7, they can all be ruled out!

(8.2) The plane cannot be tiled by congruent copies of a convex n-gon with
n > 6, if only its extreme points are considered as its vertices. The proviso
is necessary: by putting n − 3 additional equidistant vertices on an edge of a
triangle we obtain, for any n ≥ 3, a non-strictly convex n-gon whose congruent
copies obviously tile the plane.7

If there were such a tiling, the angles at each vertex would add up to 2π,
with each tile having contributed (n− 2)π worth of these angles. So the ratio,
(number of tiles)÷(number of vertices), for the portion inside a large circle,
would be roughly 2/(n−2). Thus, on an average, each vertex would be incident
to 2n/(n− 2) tiles. But n > 6 is the same as 2n/(n− 2) < 3, so it follows that
some vertex would be incident to just two tiles, which is absurd. q.e.d.

The pendulum had thus swung to the other end, and now it even seemed
likely to me that one should be able to characterize the—from above, necessarily
very special—strictly convex hexagons and pentagons whose congruent copies
can tile the plane. However, somewhat surprisingly, from the review article [5],
and more recent postings regarding this topic on the web, I have learnt that this
classification problem remains very much open for pentagonal tiles! The story
thus far is quite interesting, so can bear repetition.

6However I’m not too sure: most students in this temple of higher learning are opposed
to acquiring any, so quite naturally (and with my wholehearted approval) they ‘bunked’ my
classes, but even of the handful that attended, I am afraid most were mentally absent.

7Appropriately serrating the edge instead, one can likewise get numerous non-convex n-
gonal tiles, for all n ≥ 5 (see also the drawings of Escher).

10



§9. From David Hilbert to Marjorie Rice. Convex hexagonal tiles
were classified by Reinhardt, an assistant of Hilbert, in his 1918 Ph.D. thesis,
and it was assumed for fifty years that he had also classified convex pentagonal
tiles. The incompleteness of his list was pointed out in 1968 by Kershner in the
American Mathematical Monthly. Moreover, the three new types of tiles that
Kershner discovered were solutions to the second part of Hilbert’s Eighteenth
Problem: they cannot tile the plane isohedrally, i.e., in such a way that the
symmetries of the tiling act transitively on the tiles. (Actually, Hilbert had
only posed the analogous 3-dimensional problem, and Reinhardt had settled it
in 1928; prisms on these Kershner pentagons give simpler examples.) Wider
publicity was given to this work by Martin Gardner in the Scientific American
of 1975, and this fresh airing had quite unforeseen consequences.

A rank amateur, Richard James, found another convex pentagonal tile, show-
ing that Kershner was wrong in claiming completeness for his extended list.
Agony was piled on by yet another amateur, Marjorie Rice, who produced as
many as four new types of pentagonal tiles. (If memory serves me right, some
of her discoveries now decorate a floor of the math tower of Ohio State Uni-
versity?) This was the position when [5] appeared in 1980, and from the web I
learn that yet another convex pentagonal tile was found later, in 1985, by Rolf
Stern. However no one has apparently had, after 1975, the temerity to claim
that the extant list of pentagonal tiles is now complete!

On this matter of amateurs and professionals, let me remark that I personally
avoid using the (unfortunate but hackneyed) word ‘professionalism’ to praise,
and even more, ‘amateurish’ to criticize. Good mathematics has seldom been
born out of purely pecuniary considerations, and seldom without a goodly dose
of amateurish enthusiasm.

The quadrilateral tiling of Figure 4 is isohedral: given any tile, translations
by its diagonal vectors, and half-turns about the mid-points of its edges, map
tiles to tiles, and a suitable composition – which moreover is unique if the
quadrilateral is generic – of these isometries takes the given tile to any desired
tile. As against this, Figure 5 shows another quadrilateral tiling, by congruent
{60◦, 120◦}-rhombi, which is not isohedral: the shaded tile is mapped to itself
by any symmetry – there are only four of these – because it is the only tile
with two vertices of valence 3 and two of valence 5. Elaborating further on this
same idea, the reader can check that there are uncountably many distinct tilings
by such congruent rhombi – or, for that matter, by congruent right isosceles
triangles – having no symmetry other than the identity map! Hilbert however
was apparently sure that, if the congruent copies of a (convex) polygon could
tile the plane, then they must also be able to tile it isohedrally.

Figure 5

The next Figure 6, from Marjorie Rice’s website, shows one of her pentagonal
tilings. It uses congruent copies of a generic convex pentagon ABCDE obeying
the conditions EA = AB = BC = CD, 2D + C = 360◦ and 2E + B = 360◦. In
any tiling by such tiles, the tile sharing the unequal edge DE with ABCDE must
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be its mirror image in this edge. Further, this reflection is the sole congruence
between these two tiles. However, this reflection cannot be a symmetry of the
tiling, because it does not map the third tile at D to itself. This follows because
ABCDE is not symmetric with respect to the bisector of the angle C. Thus,
no tiling by congruent copies of ABCDE is isohedral, and this pentagonal tile
is a solution of the second part of Hilbert’s Eighteenth Problem.

Figure 6

§10. A belated preface. Last Baisakhi8 I made a resolution: “just enjoy
math writing up things for website only.” My intention was to post indepen-
dent short stories from my notebooks, starting with ‘I. Chauhan quadrilaterals,’
which I was already in the process of writing up.

However this first story was refusing to remain short: it had grown so, and
almost on its own! It would have been an act of violence on my part to give
only the bare bones – say, just the statement and the three proofs, §§ 1-4 – and
omit entirely the extra flesh and shape that this baby was putting on virtually
every day. So much of interest had happened just in this first month! Most of
this is now in §§ 5-9 above, but certainly not all. For example, I have still to tell
you how Vibhor’s proof generalizes to n-dimensional octahedra with diagonals
parallel and equal to n fixed vectors. Besides, shortly after Baisakhi, I started
seeing glimmers of a Morse theoretic argument that would yield the possible
topological types for the space X of all closed n-gons with sides of n prescribed
lengths, and the details of this argument were in my hand by May 15.

Now my intention became to push this first story till this application of
Morse theory, and then wrap it up – before it got totally out of hand – with
only a brief mention of the recent generalizations of Heron’s formula.

This resolve was not easy to keep. After re-reading Osserman’s review article
[6], I was by now fully aware that the story also led naturally into some beautiful
and basic differential geometry and analysis. However the straw that finally
broke this resolve was another paper. This I shall disclose in the next section,
§ 11, which should also give you an idea of the nature of my notebooks.

So, by June 4, 2008, the date on which I’d typed up § 9, I was decided
that this first story shall essentially be the only one, and shall be pushed along
without any planned ending in mind.9 Besides the sheer fun of it, I hope thus
to exemplify a magical fact about mathematics: it is, in its complete entirety,
an almost logical consequence of very small parts of it! Yes, it is very vast, but
‘unity of mathematics’ is not an empty cliché: it is very real, almost organic.
Almost as surely as the germ of an analytic function determines all of it, the
tiniest living bit of mathematics is enough to clone back the entire beast!10

8Punjab’s New Year Day used to fall always on April 13, but p. 81 of my current notebook
reminds me that, for some reason, last Baisakhi was on April 12, 2008.

9However I do hope that its posted installments shall be found to be somewhat more
interesting than those of the usual soap opera!

10I must emphasize that there is nothing so very special or unique about ‘Chauhan quadri-
laterals’ in this respect. This elementary problem is no more, and no less, fertile than many
others, that could equally well have served to seed this process.
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§11. Twenty-six pages. Despite the din, I had been working peacefully
enough during the daytime in the main house only, in a couple of rooms so
far spared by the renovation, but now their turn had come. So, by May 15, I
was obliged to pack much of my stuff for long storage, and bring the remaining
books and papers to my present and smaller room in the annexe.

Perhaps most people procrastinate over paperwork, but in my case it has
been way beyond normal! This became clear to me as I tried, quite vainly,
to bring some sort of order to material that has accumulated over the years.
The week or two before the move, that I had grudgingly set aside only for this
onerous activity, turned out in the end to be grossly inadequate. So basically, I
just packed the stuff as such in boxes, and have – once again! – postponed its
organization to when I unpack these boxes in my new office.

From the piles of photocopied papers, I could keep only a handful. I decided
to choose only those papers which had, in some way or the other, at some time
or the other, struck some chord in me. This choosing turned out to be fun, and,
since the choices I made are indicative of what, in mathematics, has worked for
me, and what hasn’t, I have even made a list of these favourites.

I also made an inventory of all my notebooks, and was surprised that there
were more than a hundred items. Some are probably worthless, but brows-
ing through others, I was reminded often enough of results which should have
been written up. I have a feeling that, as this story unfolds, I shall get some
opportunities to make at least partial amends in this respect.

Coming back to my current notebook, the following is a summary of its
twenty-six pages – pp. 99-124, May 27 to July 4 – immediately after the list
of favourites, This should give you an idea about how I work, also it previews
some topics that I plan to deal with in more detail in later sections.

(11.A) Möbius balcony. There is a sketch of what the new rear balcony
of my office shall look like, and the remark that its frame only appears to be
one-sided, the surface of any material body is necessarily two-sided.11

(11.B) Notes on Heron theory. In §2 we used the fact that a quadrilat-
eral can be flexed. In sharp contrast to this, Euclid postulated in Book XI that
convex 3-dimensional polytopes are rigid! The flexing quadrilateral encloses the
maximum area

√
(s− a)(s− b)(s− c)(s− d) iff it is cyclic. When d = 0 this

reduces to Heron’s
√

s(s− a)(s− b)(s− c) for the area of a triangle, which was
probably known to Brahmagupta.12 Some years ago someone sent me a mov-
ing newspaper article [7] about terminally-ill David Robbins trying to develop
a general formula for the area of any cyclic n-gon in terms of its n sides.13

Surprisingly, the best route to Robbins’ purely 2-dimensional generalizations is
via an elegant higher-dimensional generalization of Heron’s formula! Possibly,

11In fact in “Cacti and Mathematics,” it was convenient to define a closed orientable surface
to be one which bounds a material body! I plan to give more, about the mathematical motifs
to be used in the renovated house, in “213, 16A.”

12There is quite a bit about Brahmagupta on the web, but I was unable to find the original
Sanskrit enunciation of his theorem.

13I had found the note of surprise in this article misplaced: wouldn’t a painter, similarly
stricken but still physically and mentally strong enough to paint, not carry on painting?

13



Cayley had begun by noticing the following cute identity,

s(s− a)(s− b)(s− c) = − 1
16

∣∣∣∣∣∣∣∣

0 1 1 1
1 0 a2 b2

1 a2 0 c2

1 b2 c2 0

∣∣∣∣∣∣∣∣
,

and wondered if bigger determinants of the same type had a similar geometric in-
terpration? They do, a simple wedge product calculation shows that the squared
n-dimensional volume of an n-simplex equals (−1)n+1

n!2n |d2
ij : 0 ≤ i, j ≤ n + 1|,

where dij is the distance between the ith and the jth vertex, with the fictitious
0th vertex at the same distance 1 from all others.

Consider now a closed triangulated 2-manifold M2 (simplex-wise) linearly
embedded in R3, and extend M2 to a triangulation V 3 of the enclosed volume
without using any additional vertices. Applying Cayley’s formula to each tetra-
hedron of V 3 and adding we can compute this volume, but this involves the
interior edges also. However, by applying Cayley’s formula to the degenerate
volume zero 4-simplices determined by any 5 vertices we also get plenty of rela-
tions. Sabitov showed that for a generic M2 – and so for a convexly embedded
triangulated 2-sphere – these relations determine the interior edges in terms
of the edges of M2. So, a generic linearly embedded triangulated 2-manifold
M2 ⊂ R3 is rigid, a generalization of Euclid’s rigidity postulate.14

Also, even for non-generic positions, Sabitov could eliminate the interior
edges from the formula for volume, to show that, 48 times the squared volume,
enclosed by a linearly embedded triangulated 2-manifold M2 ⊂ R3, satisfies a
monic polynomial over the ring over Z generated by the squared edges of M2.
Showing – in striking contrast to the 2-dimensional situation – that the volume
enclosed by a flexing M2 ⊂ R3 is constant.15

It seems that, by applying Sabitov’s results to a long bipyramid, with a given
cyclic n-gonal normal central section, one should be able to obtain practically
all the results proved or conjectured by Robbins, for example that, −16 times
the squared area, enclosed by a cyclic n-gon, satisfies a monic polynomial over
the ring over Z generated by its squared edges, etc.

(11.C) Why not Egyptian? It is funny how Euclid and Heron of Alexan-
dria are always ‘Greek’ – but maybe not in Egyptian school textbooks? – while
Cleopatra, of much the same stock and place, is usually ‘Egyptian’.

(11.D) “Towards the Poincaré conjecture . . . ”! Having come (§9) to
the second part of Hilbert’s Problem 18, it was natural to peep at its first. I
recall that in Book I of Euclid – and in school – congruence ABC ≡ A′B′C ′ of
triangles is defined thus: one should be able to ‘move’ ABC so that it exactly
covers A′B′C ′. Now we perhaps prefer: there should exist a distance preserving

14The postulate itself had been proven long before by Cauchy; thus the fate of Euclid’s
rigidity postulate was quite different than that of his parallel postulate.

15The story goes that this had already been verified by Sullivan, for the flexible M2 in the
tea-room of I.H.E.S., by blowing pipe-smoke into the circular window provided in a triangle
of this model, and observing that the smoke did not come back out when it was flexed!
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map f : R2 → R2, such that f(A) = A′, f(B) = B′, f(C) = C ′. The first part
asks if there are only finitely many groups of Euclidean motions or isometries
of Rn with ‘crystals’ (bounded fundamental domains)? The answer was shown
by Bieberbach16– it was already known for n ≤ 3 – to be ‘yes’: there are, up to
conjugation with an affine motion of Rn, only finitely many groups of Euclidean
motions of Rn, which are discrete and with a compact orbit space.

As is my wont in such matters, I had searched my jail-book17 first thing after
making the ‘Vibhor tiling’ of Figure 4. Sure enough, the generic quadrilateral
tiling was in it – see [8], p. 56 – and I had soon learnt that crystallographers
call the group of its symmetries p2, which is one of 17 such groups, while in
3-dimensional space there were exactly 230 of these crystallographic groups.
Playing on with this tiling, I now observed the cute fact that, the quotient map
R2 → R2/p2 is a covering of the 2-sphere branched over four points. This
because, the half-turns around the mid-points {A,B, C,D} of the edges of any
tile are in p2, so the quotient is the 2-sphere obtained from tile after making the
boundary identifications shown in Figure 7, and the map is two-fold branched
at the pre-images of the four points {A, B, C,D} of the 2-sphere.18

Figure 7

Has someone written quick and neat proofs of these 19th century results,
that there are 17 crystallographic groups for n = 2, and 230 for n = 3? I went
to the web on June 2 to find out, and out popped, to my surprise, a paper
by Milnor entitled, “Towards the Poincaré Conjecture and the Classification of
3-Manifolds”! Here is why: these crystallographers – Fedorov in Russia (1890),
Schönflies in Germany (1891), and Barlow in England (1894)– had implicitly
classified all closed 3-dimensional manifolds which are flat, i.e., which can be
equipped with a Riemannian metric whose sectional curvatures are zero. For, an
n-manifold is flat iff it is the orbit space of a crystallographic group whose non-
constant motions have no fixed points, and when n = 3, only 10 of the 230 groups
satisfy this condition, so there are ten flat closed 3-manifolds. The symmetry
group p2 of a ‘Vibhor tiling’ (or of the parallelogram tiling determined by the
mid-points of its edges) does not satisfy this condition, and its orbit space S2

is not flat.19 For n = 2, there are two flat closed 2-manifolds : R2/p1 ∼= T2 and

16The thesis advisor of Reinhardt (§9) who solved the second part of “18” 18 years later.
Talking of advisors, my advisor Phillips’ advisor, Milnor, shall be entering this story presently,
along with Charlap and Gromov, who also signed my 1974 Stony Brook thesis.

17I once told Keerti – who has not let me forget this joke since – that if I had to spend time
in a jail that allowed just one book, then I’d take the book [8] by Coxeter (I hope I am not
tempting fate, actual jails in India are not remotely as balmy as this fictitious one).

18I emphasize that my notebooks are workbooks, so with lots of mistakes. For example, on
page 102, I used 5− 4 + 1 = 0 (??) – the identifications on the quadrilateral’s boundary give
a cell subdivision with 5 vertices, 4 edges and 1 face – to conclude that the quotient R2/p2
must be a 2-torus. This mistake was corrected many days later on page 114.

19The four non-hyperbolic closed 2-manifolds – S2, RP 2, T2, and K.B. – are the ones
which occur as such orbit spaces, but there are other possibilities, for example, for p4g, the
group of symmetries of the square tiling, the orbit space is a 2-cell. Problem: characterize
crystallographic groups whose orbit spaces are closed n-manifolds!
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R2/pg ∼= K.B., here p1 is generated by two independent translations, and pg
by a translation and a glide reflection. For n ≥ 3, Bieberbach’s theorem tells
us that there are finitely many flat closed n-manifolds, but the exact number is
unknown for n ≥ 5 (for n = 4 there is a computer-aided result).

It was at about this time that this tale became open-ended (§10) and I
decided that its very next section would be on Euclidean motions and this
finiteness theorem about them. A truth so general ought to have a simple
explanation, I felt, and indeed, many reasonably simple proofs of Bieberbach
are available, for example, there is one in Charlap’s book [10].

As Charlap stresses, the job is to show that a crystallographic group has
one nonzero translation, from which it follows that it has n linearly indepen-
dent ones, etc. For the fixed point free case, this translates into the geometric
statement that, a closed n-manifold is flat iff it can be covered by the n-torus.
In 1978, Gromov proved more generally that, a closed manifold is almost flat,
i.e., it can be equipped with a diameter one Riemannian metric with sectional
curvatures arbitrarily close to zero, iff it can be covered by a nilmanifold, i.e., a
compact coset space of a Lie group whose Lie algebra is nilpotent. From page
42 of [10], I learnt that Gromov was led to this work from an attempt to un-
derstand “what’s really going” in the proof of Bieberbach’s theorem, and from
the page 41 before it, that Bieberbach’s own proof had used a “non-trivial result
from number theory” about the approximation of irrationals by rational.

Which rang a bell! While reading my thesis20 in 1974, Gromov had been
particularly interested in this example: for a linear foliation F on the 2-torus,
E1(F ) is finite dimensional iff its slope cannot be well-approximated by rationals.
He had remarked that it should be possible to extend this to nilmanifolds! Which
suggests strongly to me that he was at that time reading Bieberbach’s original
proof of his theorem, and already knew where he might be heading.

However, in the modern proofs of Bieberbach that I saw – including those
inspired by Gromov, for example, that of Vince21 – diophantine approximation
is not used. So, if I want to learn how diophantine approximation had been
used by Bieberbach, I shall have to look up the original paper.

(11.E) Saved from Seine! What can we say about the strictly convex
crystals (fundamental domains) of a crystallographic group? Yes, there are
uncountably many22 of them, but they have the same content, and must be
fairly special, because the congruent copies of a crystal have to tile space (§8),
and that too isohedrally (§9), under the action of the group. Using (8.2), which
does not use isohedrality, we know that, a planar strictly convex crystal has

20My thesis had dealt mainly with the global analytical properties – finite dimensionality,
Serre duality, etc. – of the terms of a spectral sequence Ek(F ), which converges to the de
Rham cohomology of a smooth closed manifold equipped with the smooth foliation F .

21I’ve postponed a discussion of this almost canonical proof to §12 (Vince had also played
a key rôle in the dénouement of “Equivelar maps”).

22For example, any quadrilateral whose sides have mid-points {A, B, C, D} is a fundamental
domain of the group p2 of Fig. 7 (showing yet again why quadrilaterals with equal diagonal
vectors have the same area) and there are many others too, for example, the hexagonal closure
of all points closer to A than to any other point in its orbit.
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at most six sides. So I tried to generalize the argument of (8.2) to show that,
there are only finitely many combinatorial types of strictly convex n-dimensional
polyhedra whose congruent copies can tile n-space?23 I did not succeed, but I
learnt and rediscovered some interesting things in the process.

To obtain (8.2) I had used Euclid’s
∑

θ = (v−2)π for the sum of the internal
angles of a convex v-gon24, i.e. that, the sum of the external angles θ∗ of any
convex polygon is 2π, where θ∗ = π − θ.

A similar argument would have yielded the required result for polytopes if
only it were true that the sum of the internal solid angles obeyed

∑
θ > vπ

if the number v of vertices is sufficiently large. Alas! for any ε > 0, there are
convex polytopes with arbitrarily large number of vertices, and

∑
θ ≤ εvπ. To

see this, start with any convex polytope in which the dihedral angle of an edge
is very small, and just put lots of new vertices on the interior of this edge! In
particular, the sum of the “external solid angles” 2π − θ is not bounded.25

Nevertheless, Euclid’s result extends neatly – the sum of the external solid
angles of any convex 3-polytope is 4π – if we define an external angle at a vertex
to be the (measure of the) half-cone generated by exterior half-normals of its
incident faces. For, convexity ensures that, by putting all these half-cones – see
Fig. 8 – together at the origin, one obtains a conical subdivision of 3-space.

Figure 8

Also, this spatial Euclid’s theorem is equivalent to Euler’s formula! The
external angle (above half-cone) of a vertex cuts the unit sphere in a spherical
polygon bounded by great circle arcs cut by planes through origin perpendicular
to the edges incident to the vertex. Therefore the exterior angles of this polygon
equal the facial angles A,B, C, . . . at the vertex. So, the area of this spherical
polygon, i.e., the exterior solid angle θ∗ at this vertex, is equal to 2π − (A +
B +C + · · ·).26 Adding over all the vertices, we get

∑
θ∗ = 2πv− (sum of facial

angles of polytope), i.e., 2πv −∑
i(ti − 2)π where ti is number of edges of the

ith face, i.e., 2πv − (2e− 2f)π = (v − e + f)2π = 4π iff v − e + f = 2.
The above proof is – see the charming paper [11] of Samelson – from a hand-

written copy made by Leibniz in 1660 (but published only in 1860) of a now-lost
paper of Descartes, that had been salvaged from a ship (bringing his belongings
back to France after his death in Sweden) which sank in the Seine in 1650! That
is, more than a hundred years before Euler found v − e + f = 2.

23From p. 966 of [5] it was clear that this problem was open (in 1980), but from p. 960 not so
clear if Delone (= Delaunay) had shown that the answer was ‘yes’ under isohedrality. If he has,
it lends credence to this conjectural picture: the strictly convex crystals of a crystallographic
group can be organized into a finitely stratified space, with the combinatorial type of the crystal
constant in each strata? I did not assume isohedrality in my attempt.

24It follows from the case v = 3, which is logically equivalent to Euclid’s fifth postulate.
25These now-obvious facts took quite some time to sink in! Misguided by the smooth case,

when all internal solid angles are 2π, I had thought the needed lower bound likely, overlooking
the fact that almost all the vertices could be on a lower stratum of positive dimension.

26This Harriot-Girard formula is easy: note that the lune between two great semicircles
enclosing angle α has area 2α, then cut the unit sphere up into some lunes – cf. [8], p. 95 –
to see that a spherical triangle with internal angles α, β, γ has area α + β + γ − π, etc.
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As Samelson points out, “Gaussian curvature” of polytopes is concentrated
at their vertices, and is measured by these spherical polygons. So Descartes
has given us the Gauss-Bonnet theorem for any polytopal surface, convex or
not! Now the unit normal (Gauss) “map” of Fig. 8 may blow up a vertex to a
spherical polygon with self-intersections, but its signed area θ∗ can be computed
as before. So, in almost perfect analogy with the smooth case, the signed area∑

θ∗ is 2π times the Euler characteristic of the surface.27

Alternatively, 2π(v− e+ f) =
∑

θ− 2
∑

φ+2πf, the alternating sum of the
internal solid angles of all the cells of the polytopal surface, where φ denotes the
dihedral angle of an edge.28 For, each θ is the area of a spherical polygon on
the unit sphere with internal angles equal to the dihedral angles of the δ edges
incident to the vertex. So θ = 2π − δπ+(sum of the dihedral angles of these δ
edges). Summing over all vertices we get

∑
θ = 2πv − 2πe + 2

∑
φ.

This formula came up during my search for that impossible lower bound
for

∑
θ. Soon afterwards I checked from Grünbaum [12] that it was the 3-

dimensional case of the angle-sum or “Gram” relation. It seems that this rudi-
mentary polyhedral theory has now been developed by Cheeger and others to
practically the same level as the index theory of smooth manifolds.

(11.F) Crystallographic coverings. To work out Rn → Rn/G we only
need to know what the crystallographic group G does to one crystal. The 17
planar groups are conveniently depicted in this way in Chapter 1 of Berger [13]
(and it would be nice to have similar pictures for all the 230 spatial ones). So,
continuing as in Figure 7, where G = p2, it was fun working out this branched
covering for all the 17 planar groups! There are only 7 orbit spaces R2/G,
viz., the four non-hyperbolic closed 2-manifolds, the cylinder, the Möbius strip,
and the 2-disk. In particular, of the 5 groups, p1, p2, p3, p4 and p6, which
contain only orientation-preserving motions, the first had orbit space T2, and
the other four S2, but the four coverings R2 → S2 were branched differently;
more generally, the 17 branched coverings were all topologically distinct.

This was however only to be expected (but I realized this only later!) because
it is easy to see in general that, distinct crystallographic groups G give rise to
topologically distinct branched coverings Rn → Rn/G. For, an isomorphism of
two such branched covering spaces, restricted to a generic un-branched fiber,
would give us an isomorphism of the two groups.

These branched coverings are very special – for one, they factor through the
n-torus – but I don’t know if they have been characterized topologically? Or
whether, it is known when their base spaces are manifolds – is the Poincaré 3-
manifold amongst them? – and whether these manifolds can always be equipped
with a Riemannian metric having constant non-negative curvature?

(11.G) Jagatgarh? On page 116 it is recorded how I found by chance on
June 17 on the web a detailed map, circa 1955, in which Banasar Garhi – see

27That is, 4π times the Euler characteristic of the region enclosed by the surface; in this
form the polytopal Gauss-Bonnet formula extends to all dimensions.

28The solid angle of an edge, being the area of a lune of angle φ on the unit sphere, is 2φ;
the solid angle of any face is 2π.
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Fig. 9 – is called “Jagatgarh Fort” and the whole surrounding area shown to
be in P.E.P.S.U. (Patiala and East Punjab States Union). Thus I now have (at
long last!) some documentary support for the history of this fortress as sketched
in a Note of the concluding part of “The Forgotten Shaheeds of Dagshai.”

Figure 9

(11.H) Rook-boards. On June 25-26, I typed up a paper29 on crosswords,
and towards its end, posed this problem:“find all grids of a given size such that
the types and lengths of its words form a given sequence.” I had demanded that
the white squares of the grid be rook-connected, i.e. that a single “rook” like
that of chess, except that it remains always on white squares, can visit them all.
If one drops this requirement, grids of large enough size can always be found,
for any sequence of types and lengths; so there is a well-defined minimal size for
each sequence; but there seems no reason why a grid of this minimal size should
be either unique or rook-connected? However, actual crossword grids are not
merely centrally symmetric; they are, as a rule, quite tight with respect to their
sequence of words: they are minimal, unique, rook-connected and every black
square is indispensable (making it white would change the sequence).

In working out an actual grid, it helps to exploit its central symmetry, pay-
ing special attention to the central row, and use stick patterns, which are much
faster to draw, as one looks for the right grid. These points are illustrated in
Figs. 10a, b, c which show how I found the minimal sized grid for the sequence
(h5, v8, v8, v6, v5, v5, v5, h8, h5, h8, h5, {h3, v3}, v3, v8, v8, h6, h6, h3, v6, v5, v5,
v5, h5, h8, h5, h8, h5) to solve the cryptic Crossword 1313 for which the Indian
Express of June 23, 2008 had ‘forgotten’ to give the (correct) grid.

Figures 10a, 10b, 10c

Consider positionings of “rooks” on any rook-board, i.e., white portion of any
grid, such that no “rook” can capture any other. Treating these as simplices
one obtains a simplicial complex. For the case of a rectangular rook-board,
the topology of this simplicial complex has been worked out, and put, via the
Borsuk-Ulam theorem, to good combinatorial use. See, for example, Matousek
[14] p. 163, and my old paper, “A generalized Kneser conjecture.” Are there
interesting generalizations of these results for other rook-boards?

(11.I) Fake tori! Flat, and more generally, almost flat manifolds are ex-
amples of aspherical manifolds, i.e., those which can be covered by contractible
manifolds (so their higher homotopy groups vanish). The Bieberbach-Gromov
theory is thus only a step towards the topological space form problem: closed as-
pherical manifolds are homeomorphic if and only if their fundamental groups are
isomorphic? This suggests that one should consider crystallographic-like groups
of homeomorphisms; and, for crystallographic groups themselves, not exclude

29“Fly, getting sad on a fair amount of alcohol?(10).” Writing it helped dispel blues that
had become bottled up due to lack of progress in understanding Bieberbach’s theorem.
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from consideration, ‘Escher-like’ or even wild crystals. I hope to show, by using
Weierstrass-type (continuous but nowhere differentiable) functions on n-space,
why an n-torus can admit exotic smooth and fake piecewise-linear structures. As
it is, the statements in this field – see, for example, W.-C. Hsiang30 and Shane-
son [15] – are clear enough, but only a tiny cognoscenti can make head or tails of
the published proofs. Which is a sin, for these striking results are, in my humble
opinion, the most beautiful achievements of 20th century mathematics!31
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