
On Equivelar Maps
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§1. Introduction. This note is a by-product of [1], where I had discussed,
for the benefit of its non-mathematical readers, some well-known examples of
finite uniform tilings by p-gons, two on each edge, q around each vertex (the
tiles were not required to be flat, nor the edges straight). It seemed to me that
such a finite uniform tiling should exist for any arbitrary p ≥ 3 and q ≥ 3.
However, I was unable to settle this point, nor find an answer later on in the
literature. So I am presenting here what little I was able to do – mainly, the
result that this conjecture is true if p or q is even – in the hope that this will
arouse some interest and lead to its rapid resolution. Also, I’ll switch here to a
terminology that conforms better with previous work in this field.

Following Coxeter and Moser [2], page 20, a map shall mean a cell sub-
division of a closed surface, that has finitely many zero-dimensional cells or
vertices, to which finitely many one-dimensional cells or edges are attached by
glueing their boundaries to pairs of (not necessarily distinct) vertices, and fi-
nally, finitely many two-dimensional cells or faces are attached, by glueing their
circular boundaries to some closed edge paths (possibly with repeated vertices
and edges) of this one-dimensional skeleton, so as to form the closed surface.

An equivelar map of type {p, q} – or just ‘a {p, q}’ – is one in which each
face has p edges (a repeating edge is counted twice) and each vertex is incident
to q edges (an incident loop is counted twice). A {p, q} on a non-orientable
surface pulls back to a {p, q} on its orientable 2-fold cover. So the conjecture
above is the same as saying that there exists a {p, q} for any p ≥ 3 and q ≥ 3.
These two inequalities shall be in force from here onwards, and surfaces should
be understood to be orientable, unless the contrary is indicated.

If a {p, q} has N0 vertices, N1 edges and N2 faces, then qN0 = 2N1 = pN2,
for example, qN0 = pN2 holds because each of the N0 vertices is incident to q
faces (each counted as many times as the vertex occurs in it) and each of the
N2 faces has p vertices (each counted as many times as it occurs in the face).
So N0/2p = N1/pq = N2/2q and the Euler characteristic 2 − 2g of the surface
equals this ratio times 2p− pq + 2q = 4− (p− 2)(q − 2). Using this we’ll show
next that any surface admits only finitely many types of equivelar maps. Note
that if the Euler characteristic is nonzero, the numbers Ni are fixed by the type
{p, q}, so it follows that, excepting the 2-torus, any (orientable) surface admits
only finitely many (combinatorial isomorphism classes of) equivelar maps.

The 2-sphere can admit only {p, q} = {3, 3}, {3, 4}, {4, 3}, {3, 5} or {5, 3}
because 2p−pq+2q > 0 only for these p, q ≥ 3, and conversely, it has essentially
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been known ever since Plato and Euclid, that it admits a unique equivelar map
of each of these five types, viz., the tetrahedron, the octahedron, the cube,
the icosahedron and the dodecahedron. Again, 2p − pq + 2q = 0 iff {p, q} =
{3, 6}, {4, 4} or {6, 3}, and conversely, it has been known since very long that
the 2-torus admits infinitely many equivelar maps of each of these three types.
For all other types, using N0 ≥ 1 and p ≥ 3 we get 2− 2g = N0

2p [2p− pq + 2q] ≤
1− q

2 + q
p ≤ 1− q

6 , and similarly, using N2 ≥ 1 and q ≥ 3, that 2− 2g ≤ 1− p
6 ,

which show that we must have p, q ≤ 12g − 6.
These general bounds on p or q are the best possible, for example, in § 6

there is a {18, 3} of genus 2 with just one face. Unlike this, most of the {p, q}’s
that we shall construct below are non-degenerate, that is, their edges and faces
have distinct vertices. For these one has N0 > p, so 2−2g < 1

2 [4−(p−2)(q−2)],
therefore, the possible types of a non-degenerate equivelar map on a surface of
genus g ≥ 2 are the finitely many integral points lying in the shaded area of
Figure 0 between the hyperbolas (p− 2)(q− 2) = 4 and (p− 2)(q− 2) = 4g. The
three toral types are on the hyperbola (p − 2)(q − 2) = 4, while the five below
it live on the 2-sphere.

Figure 0

From Coxeter and Moser [2], pages 101-102, one learns that genus 2 equiv-
elar maps were discussed in a 1922 paper of Errera, and much more fully, by
Threlfall in his 1933 thesis; only, these authors had called them ‘regular’. How-
ever, following some 1927 papers of Brahana, and then [2] itself, it is now usual
to call a {p, q} a regular map only if all its local rotations – that is, of any
face, or around any vertex – can be extended to global combinatorial automor-
phisms. So it would have been apt to dub the original and much weaker notion
a locally regular map, however we have gone for the shorter ‘equivelar map’
of McMullen and Schulte [3], page 20. Actually, the adjective ‘equivelar’ had
been coined already in McMullen, Schulz and Wills [4], but in that paper, and
its sequels [5] and [6], it was applied only to cell subdivisions of surfaces that
can be linearly embedded in Euclidean 3-dimensional space with all faces convex
polygons, a much stronger requirement than merely demanding that the map be
non-degenerate. For example, a {p, 3} with p > 5 cannot be linearly embedded
in Euclidean n-dimensional space for any n ≥ 3. The ‘doubling construction’
of § 3 below was used, in this geometric context, in [5] to iteratively construct
some {3, q}’s and {4, q}’s linearly embeddable in 3-space.

In our purely topological context, doubling is more flexible because – as we
show in § 3 and § 4 respectively – many, but unfortunately not all, of the ‘duals’
of the aforementioned iterated doubles also obey the ‘strong disjoint covering
property’ of § 2. This allows us to employ a far-reaching generalization of the
doubling construction in § 5 to construct examples of non-degenerate equivelar
maps of all types {p, q} with p or q even. Some more examples, constructions,
and bibliographical remarks are given in the concluding § 6.

§2. Preliminaries. The Poincaré dual of a {p, q} is the equivelar map of
type {q, p} of the same surface constructed as follows: in each face is chosen a
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barycenter or dual vertex, then a dual edge laid across each edge so as to join
the dual vertices in the two incident faces. So each vertex is contained in one
and only one dual face, namely that whose dual vertices and dual edges are
those of the vertex’s incident faces and edges. Thus if {p, q} has N0 vertices,
N1 edges and N2 faces, then its Poincaré dual {q, p} has N2 vertices, N1 edges
and N0 faces.

A map has the disjoint covering property or d.c.p. if its vertex set can
be partitioned off into vertex sets of pairwise disjoint faces; and it has the
strong disjoint covering property or s.d.c.p. if from the remaining faces a second
pairwise disjoint set of faces covering all the vertices can also be chosen.

An obvious necessary condition for a non-degenerate {p, q} to have the d.c.p.
is that N0/p be a whole number, but N0/p = N2/q, so it is also the necessary
condition for its non-degenerate dual {q, p} to have the d.c.p. The tetrahedron
{3, 3}, and the 7-vertex triangulation of the torus, a {3, 6}, are examples not
satisfying this necessary condition. This condition is far from being sufficient.
In fact we’ll check in §4 that, for p odd, a {p, 3} cannot have the d.c.p., but
pN2 = 3N0 shows that if p does not contain the prime 3 then p does divide
N0. The octahedron {3, 4}, and its dual, the cube {4, 3}, are examples having
the s.d.c.p., because vertices not incident to any face form the vertex set of a
disjoint face. Removing a pair of disjoint faces gives us the ‘tubes’ of Figure 1
whose vertices are covered by the pairs of similarly shaded disjoint faces.

Figure 1a Figure 1b

Again, although the dodecahedron {5, 3} does not have the d.c.p., its dual,
the icosahedron {3, 5}, has the d.c.p., because the four disjoint shaded triangles
of Figure 2 cover its 12 vertices, and rotating these triangles around the vertical
N-S axis shows further that it even has the s.d.c.p.

Figure 2

Though we don’t have an explicit example, it seems likely that there are
non-degenerate {p, q}’s that satisfy the d.c.p., but not the s.d.c.p.

§3. Doubling construction. Starting with the octahedron {3, 4}, respec-
tively the icosahedron {3, 5}, one can inductively construct a non-degenerate
{3, s} satisfying the s.d.c.p for any even, respectively any odd s, by the follow-
ing doubling construction, which has been used before in [5].

We delete from {3, s} a set of disjoint faces covering all its vertices to obtain
K. We then join each bounding triangle 123 of K to the corresponding bounding
triangle 1′2′3′ of a disjoint copy K ′ by a tube as in Figure 1a. This gives us
a {3, s + 2} satisfying the s.d.c.p., because similarly shaded triangles, two from
each joining tube, cover all its vertices.

An analogous inductive doubling construction, starting from the cube {4, 3}
and using the tubes of Figure 1b also gives us, for any s, a non-degenerate {4, s}
obeying the s.d.c.p.
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Figure 3a Figure 3b

We have redrawn Figure 1b as Figure 3b above, in which the dotted lines and
white dots depict the (portions of the) edges and vertices of the dual {s + 1, 4}
which lie in this tube. Note that we had chosen the vertices opposite 1, 2, 3 and
4 to be 3′, 4′, 1′ and 2′ respectively. This twist will now be exploited to show
that the duals {s, 4} also satisfy the s.d.c.p.

Since this is so for the initial {3, 4}, it suffices to show that if {s, 4} has the
s.d.c.p., then {s + 1, 4} has the s.d.c.p. Consider any pairwise disjoint set of
faces of {s, 4} covering its vertices. One and only one of these s-gons has, as
a vertex, the barycenter of the deleted square face 1234 of {4, s}. This s-gon
is the dual face of one of the four vertices 1, 2, 3 or 4, say of 3. The doubling
construction changes this s-gon into an (s + 1)-gon of {s + 1, 4}, whose portion
within the tube is shown shaded in Figure 3b, while the portion off the tube
coincides with that of the original s-gon. Also shown shaded in Figure 3b is
the portion of the (s + 1)-gon contributed similarly by the disjoint copy. We
note that these portions are disjoint and cover all the white dots which are in
this tube. Thus the original pairwise disjoint covering set of faces of {s, 4} has
become a pairwise disjoint covering set of faces of {s + 1, 4}, which proves the
implication.

A similar argument, using Figure 3a this time, shows that the duals {s, 3}
of all the {3, s}, s even, which were obtained above by repeatedly doubling the
octahedron, also satisfy the s.d.c.p.

§4. A remark. No {s, 3} with s odd can have the d.c.p. Suppose one can
find a set V of vertices of {3, s} whose dual faces are disjoint and cover the dual
vertices. Then each triangular face of {3, s} is in the star of one and only one
vertex from V . So, if v is in V , then any vertex u in the link of v cannot be in
V . Let v = v1, v2, . . . , vs be the vertices in the link of u in cyclic order. The
vertex v3 must be in V , otherwise the shaded triangle uv2v3 of Figure 4 would
not be in the star of any vertex of V . Likewise v5, v7, . . . are in V , which rules
out that s is odd, because vs is in the link of v, so not in V .

Figure 4

For s even, the above argument shows that V is determined by any of its
members v. In other words, the vertices of an {s, 3} with s even can be covered
by at most one set of disjoint s-gons which contains a specified s-gon.

§5. A generalization of doubling. We shall now show that, if there
exists a non-degenerate {p, q} satisfying the d.c.p., then there also exists a non-
degenerate {p, q + 2} satisfying the d.c.p. For this purpose we generalize the
doubling construction as follows.

Suppose that the vertices of the {p, 4} satisfying the s.d.c.p., that we had
constructed above in §3, can be covered by the disjoint faces G1, . . . , Gt. We
delete these to obtain T , which shall serve as our ‘generalized tube’. Note that T
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is a surface with t disjoint p-gonal boundaries ∂G1, . . . , ∂Gt. We’ll need disjoint
copies T j of T , the copy of ∂Gi in T j shall be denoted by (∂Gi)j .

Choose next disjoint faces F1, . . . , Fr of the given {p, q} covering its ver-
tices. Deleting these, one obtains K, a surface with disjoint p-gonal boundaries
∂F1, . . . ∂Fr. We’ll be using t disjoint copies of K, the ith copy shall be denoted
by Ki, with (∂Fj)i denoting the copy of ∂Fj in it.

We now attach to the union of these t copies K1, . . . ,Kt of K, r disjoint
copies T 1, . . . , T r of the generalized tube T , by identifying the p-gonal boundary
(∂Fj)i of Ki with the p-gonal boundary (∂Gi)j of T j . This gives us a closed
surface subdivided into p-gonal faces, with q + 2 edges incident to each vertex.
Furthermore, this non-degenerate {p, q+2} satisfies the d.c.p., because t disjoint
faces can be chosen in each T j which cover the vertices lying in T j , and taken
together all these tr disjoint faces cover all the vertices of {p, q + 2}.

Applying this construction to the {p, 4} of §3 gives us a {p, 6} with d.c.p.,
then applying the construction again to this we obtain a {p, 8} with d.c.p., etc.
Thus one has an equivelar map {p, q} for any p ≥ 3 and any q > 3 even, or, since
we can always pass to the dual, for any p > 3 even and any q ≥ 3. Alternatively,
from §3 we have, for p even, a {p, 3} with d.c.p. Applying the construction to
it, one gets a {p, 5} with d.c.p., then a {p, 7}, etc. Or, yet again, there is also a
parallel construction, using this time as ‘generalized tube’ {p, 3}, p even, minus
a covering set of disjoint p-gonal faces, which, applied repeatedly to the {p, 4}
of §3, also gives all {p, q} with p even.

§6. Concluding remarks Though we don’t have (p, q)’s for arbitrary pairs
of odd numbers p and q bigger than 3, we can make all (p, p)’s with p odd as
follows.

The (5, 5) is in fact known since very long. According to many (see, e.g.,
[12], p.5) the marble inlay work – its photograph 5a is from [14] – in the floor
of the Basilica of St. Mark’s in Venice is by Paolo Uccello and dates from
1420. It depicts the “small stellated dodecahedron,” the regular but non-convex
polyhedron with self-intersections – see Coxeter [13], Chapter VI, for this and
other Kepler-Poinsot polyhedra – which is obtained by extending the facets of
the dodecahedron so that pentagonal pyramids get erected over each facet. The
12 pyramidal peaks are its vertices, the 30 extensions of the dodecahedral edges
joining these peaks are its edges, while the 12 planar pentagrams extending the
dodecahedral facets are considered to be its faces. Thus it is indeed a (5, 5);
moreover, it has genus four, because 2 − 2.4 = 12 − 30 + 12. Thus, somewhat
magically, just by extending the facets of the dodecahedron, we have obtained
a closed surface quite different from the original sphere!

Figure 5a Figure 5b

The same combinatorial and topological end can be achieved – see Figure
5b – by declaring a black dot in each face of (5, 3) as a new vertex, and the
extension of each edge of (5, 3) to the black dots in the two faces, not incident
to the edge, to which its two ends are incident, as a new edge. This makes sense,
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much more generally, for any simple polygonally subdivided closed surface, i.e.,
one which occurs as the Poincaré dual P of a triangulated surface T . We shall
call the resulting polygonal complex U the Uccello (surface) of T or P .

Figure 6a Figure 6b

A face of P which is p-gonal with p odd gives rise – Figure 6a – to just one
compatibly oriented face of U , also p-gonal; but if p is even, it gives rise – Figure
6b – to two compatibly oriented p/2-gonal faces of U . The vertex of U in this
face of P is however incident to p edges of U in both cases. Also, the edge of U
extending a given edge of P , occurs in one and only one of the possibly two faces
of U associated to either of the two incident faces of P , and in no other face of
U . Thus U is, like the original T , an orientable closed surface. Moreover, if the
connected T has only vertices of odd valence, then U is connected. However,
its genus is usually quite different, for the Euler characteristic of U in this case
is 2N0 − N1, where N0, N1 and N2 denote the number of vertices, edges and
triangles of T . When T has also some, say e, vertices of even valence, then the
Euler characteristic of U is 2N0 −N1 + e, because the cells of P dual to these
vertices contribute not one, but two cells of U . For the same reason, in this
case, U can be disconnected. For example, the Uccello surface of the 9-vertex
toral (3, 6) shown in Figure 7a is the disjoint union of 3 isomorphic 3-vertex
toral (3, 6)’s, one of which is shown in Figure 7b.

Figure 7a Figure 7b

For p odd, the Uccello surfaces of the (3, p)’s of §3 are connected, and give
the required examples of equivelar maps of type (p, p). However, these (p, p)’s,
p odd, do not satisfy the d.c.p., so we cannot use the construction of §4 to now
make a (p, p+2), etc., from them. In fact, for any T having only vertices of odd
valence, it is true that U cannot satisfy the d.c.p. This follows because the vertex
set of a cell of U – for example, {1, 2, 3, 4, 5} of Figure 5b, or {1, 2, 3, 4, 5, 6, 7}
of Figure 6a – coincides with the vertex set of the link of a vertex 0 ∈ T , and
any cell of U having 0 as a vertex intersects the given cell.

It is worth noting also that, there is a triangulation of the 2-sphere whose
Uccello surface has any pre-assigned genus. Starting with the tetrahedron
T0 = A0B0C0D0, which coincides with its Uccello, let Ts, s ≥ 0, denote the
triangulation of the 2-sphere with a prescibed triangle AsBsCs, which is to be
subdivided as in Figure 8 to make Ts+1. Then the Uccello of Ts is connected
and has genus 2s. This follows because the subdivision keeps the valence of
the old vertices odd, and introduces four new odd valence vertices and 12 new
edges; so the Euler characteristic of the Uccello changes by 2.4 − 12 = −4 at
each step. Consider next the triangulation Rs obtained by deriving the triangle
AsBsCs of Ts, s ≥ 1 at a new vertex. The Euler characteristic of its Uccello
differs from that of Ts by 2.1 − 3 + 3 = 2 because it has three even valence
vertices, As, Bs, Cs. Nevertheless, despite these three ‘bad’ vertices, it can be
checked that this Uccello is also connected, so its genus is 2s− 1.
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Figure 8
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