el ‘ | . —— T
" $1. Isometries of B, Elements (x,,%,,%;) of R® will be called

vectors and written as 3. We equip R‘ with the usual dot product _x’.? =

X ¥ *X, ¥, +X,¥; } the porm is defined by ﬁc'l:m ; the distance between 2

.pointa of R* by |¥-¥]. An isometry f: R'—[R* is any function which preserves

distance (i.e. |£(R)-fP)}=|R-F for all *,7:R). We will prove that £ ig an

1sometry of R* 1£f it is of the form £()=2 + L(Z) where B¢R*and Lg0(3);

here 0(3) denotes the group of all linear automorphisms of R*which preserve
dot product. 'If' is trivial. To see 'only if' we take 2=£(0) and show that

the isometry z defined by g(X)=f(R)-Z is an element of 0(3). Clearly g
preserves terms on the right of 2x.y = x> + |y|* - [ - y|%, S0 g preserves

dot product also. So g takes the canonical orthonormal basis 'e}_,'e}_,'e} into
an orthonormal basis. For any ?:Z(i'."- )e; it follows that g('i):Z‘(g('i).g(E:))
3.(e§) = Z(x. 8 )a(e‘) (since g preaerves dot products); thus g is also linear.
In the follorlng 2 sets A, BS}R" will be called congruent if there exists
an isometry f of R such that f(A)=B.

§2. Curves in R* .We will assume that each gcalar (or 'parameter')
u takes its values over some interval I CR. A smooth vector valued function
T(u) of a scalar u will be called a curve provided ';Q(u) (the derivative)

is never zero. If the scalar u is a smooth function of another scalar w

with 94 always non-zero, then the curve 2(w)=2%(u(w)) is said to be obtained

o
by a reparametrisation; the 'reparametrisation is called grientation preserving
ir %570. Given a curve Z(u) the tangent ;;gg at the point 'u' will be the

line through T(u) parallel to the vector r(u). Note that the tangent line

at the corresponding point 'w' of a curve T(w) obtained by a reparametrirfation
is the same. The unit tangent vector at the point 'u' is defined to be ﬁ_&%‘-
Note that the unit tangent vector at the point 'w' of a curve T(w) obtained

by an orientation preserving reparametrisation is the same. Most of the
definitions to be given will have an analogous nature: they will be invariant
under all (or at least all orientation preserving) reparametrisations.

Given a point 'uy,' on a curve F(u) the grc length from 'u,' to any other
point 'u' will be defined by s(u) -fl?(u}l du. (This formula shows that

lr(u)\ul nnly if s=u+const.).Note that s(u) is a smooth function of u with ’

‘;li> 0; so the inverse function u(s) is also of the same type. For the
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reparametrised curve ?’(s):?(u(s.)) differentiation w.r.t, s will be indicated
by primes. Notel that ?'z';’:-—: = i;;‘ is precisely the unit tangent vector ?.

One should note that if the curves T(u),P(w) are related by an orientation
preserving reparametrisation then s(u)=s(v) upto an additive constant (if

the base points correspond i.e. w,= w(u,) one has exact equality). Due to

this fact it follows that definitions made by going over to the parameter

B8 and using derivatives w.r.t. s are automatically invariant under orientation
preserving reparametrisations (e.g. per this principle we could have defined
the unit tangent weekor by T = ™). If F(u),?(w) are related by an orientation
reversing parametrisation then s(u)=-s(w) upto an additive constant: this
fact shows that definitions inv_olv:l.ns second, fourth etc, derivatives w.r.t,

8 only are infact invariant under all reparametrisations. As an exanipl; one
has the curvature vector ®'' i.e. £'. Note (from T.T = 1) that this vector

is perpendicular to the unit tangent vector. The length of this vector is

denoted by &, the curvature and (in casek# 0) the unit normal vector T

is then defined by t'= k@, We note that curvature is zero iff F(s)=3s + ©

for some constant vectors 3,‘3; i.e. iff the curve is a straight line. Thus
the curvature measures the curve's departure from rectilinearity. From now
on it will be assumed that «(s)_is never zero. The unit binormal vector o
is defined to be ?x'ﬁ. It is easy to see that its derivative w.r.t. s must
be parallel to i 'S.T: = 1 yields B =0 and B'.T = 0 follows from O =
By w50 T BB =BT, o define the torsion 7(s) by B' = -7,

Note that torsion is zero iff F,b = const. for some constant unit vector B .
Infact if r= 0, the unit binormal vector B is constant and T'.B = 0 integrated
yields reqd. result; converse is equally obvious., Thus torsion measures the
departure of a curve from planarity. Next we nete that we have the following
Frenet-Serret formulae: ¥'(g)= &(8)B(s), &' ()= 7(8)B(s)_= x(5)T(s)_and
3_‘.(3) = -7(8)A(g). The first and the third have already been discussed.

To prove the second we note that o = b h?; on differentiating this we get
B' 2 B'uT + DTt = cvixT + Dkl = +b - xt, the required formula.

§3. Congruence of curves. Let T(s) be a curve parametrised by arc
length. A curve of the form T, (s) = 3 + L(F(s)) where 3 is some constant

vector and L 40(3) will be said to be congruent (see §1) to the first curve.
We note that s 18 also arc length parameter for this new curve; this
follows from |P,'@)|=|L(?'(s))] =" (s)|= 1. Differentiation shows that the

unit tangent vectors are related by -t:l(s) = L(E(8)) and the curvatures by



&(8)n (8) = 'R(8)L(R(s)) : this last eqn. is possible (take norms) only if
&(8) = k(s) ‘and so T, (s) = L(#(s)). Thus T, (s) = L(b(s)); differentiating
this and looking at magnitudes of the 2 vectors we get t(s).—.—-r(.). Briefly

we have checked that Longruent curves have same curvature and torsion.

What is much more striking is that the converse of this result is also tru

let the scalar s eI, be arc length parameter for 2 curves P(s) and -I";_(j)JJ
let k(s)we(s) and wg)= 78); then the 2 curves are congruent.Infact we wil]

show that ?-:(a) = 'i-: (0) + L(?(s) - R(0)) where the orthogonal transformatic
L i fixed by the requirement that T, (0)=L(¥(0)), & (0)=L((0)) and T, (0)=
L(B(0)). Since the curve 'x": (0) + L(?(s)-r(0)) 1is congruent to ¥(s) we use
the previous rasul:.“‘l:‘&d?f: that our problem is reduced to the rollod.ng_: 2
curves T'(s),?, (s)[by arc length se I, are givem and P(0)=r; (O),?(O):El (0),
i'(O):ﬁ;_ (0),?(0):5:_ (0); we need to prove R(s)= x";(a). Compute (?.’c';-n-'ﬂ.ﬁ"_ﬁ;‘,'ﬁ:
by Frenet's formulae: one gets KR + Tk + (4D &)1, +2. (v -xE )+ (=vR). 5, +
5‘.(-?1?‘_) = 0. So each of the cosines t.f, ,i.i »B.5 1s constant equal to 1
and one gets Twf ,Rsi} ,Bwb,. In particular T 1. P'(s)xT}(8) combined
with F0)a¥) (0) gives 2(s)eT] (8) Vs, We now close this circle of ideas by
proving the following existence theorem. Let «(g)>0 and 7(g)_be two smooth

tio c £1,;_then there exists a curve r(g) parametrised
by_arc length whose curvature is k(g) and torsion is 1(g).Infact we will

show the existence of such a curve with in addition Y(0)=0, T(0)=8 »2(0)=5)
and F(O):é:. Frenet-Serret formulas tell us that if ?(s)=(-q(a),-(1§s),-g(a)).
?(a)=(p‘(a),e‘(s).(3,(s)) and f(s):(!{s),'g(s),x‘(a)) then -(«(s) ,(8),Y{8)), i=
1:2,3, 15 a solution of the system of differential equations A< = e peey,
.‘l'.g = TOY(D - k(D@ 3‘%’. =-r(9p(x) With initial conditions at s=0
prescribed to be (1,0,0),(0,1,0) and (0,0,1). By the existence theorem
for differential equations such solutions indeed exist., We now define our
curve by X(s) ufi.(a) ds. The verification that the given &s) and (s)
are indeed the c:rvature and torsion can ba.carried out in a straightm
once we verify that for all s ,?(a),h’(s) and B(s) indeed form an orthonormal
“ B Yy

LWL
/
One can check the orthonormality of the rows by computing @;'f (i;"-&*q")

- ndﬂ*hfzﬁ(‘rt‘-k-&)* 2y, (~rpye0i 50 “*+BL+>  1s constant =1;likewise
' is constant =0 etc, etc., This completes the proof,

triad, This amounts to checking that the matrix ["‘ B ] is orthogonal,

ARSI TR
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$4. Surfaces in R. Let us say that a connected set S GR'is a pr S
surface 1f, for each point P of S we can choose some smooth function ?(u,v),
with ?g and 'E always linearly independent, which maps some region
of R?in a 1-1 way onto a neighbourhocod of P. Such a function r(u.v) is
said to be a parametrisation of a nhbd. of P, Given 2 surfaces a gnooth

Fogdt
Yo

- l-l I’-’;

map £:15->5%1s one which carries each such parametrisation 2(u,v) to

a emooth function T™u,v) = f(?(u,v)). Henceforth we will denote
differentiation with respect to u by the suffix 1 and with respect to v
by the suffix 2. The tangent space Tp at a point P with parameter values
u,v is defined to be the subspace of rR spanned by E-:_(u,v) and Tr;_(u,v);
it is easy to verify that this definition 1is independent of the manner
in which a neighbourhood of P has been parametrised.(This notion is to
be distinguished from 'tangent plane' at P which is the pa.rallel. affine
plane through P: if no confusion is possible this too w:LllA be denpted
by Tp). Given a smooth map fi1S—»S™ we define, for each PeS, its
linearization at P to be the linear map fp:Tp-» Tpa (here P*=f(P)) such
that v T? and R Tr(jagain it is trivial to verify that this definit-
ion is independent of the parametrisation chosen for a nhbd. of P). If
.l unit vector ‘iT(P), normal to the tangent space TP' has ‘beeg as%gned to
each point Pe S, then it determines a Gauss map t:s-—»safﬂhere s* denotas
the unit sphere {?I‘l?l= l}. We will deal only with grientable surfaces
i.e. those for which a smooth Gauss map can be fixed.(An open Mobius
strip is an example of a non-orientable surface. It is known that all
compact(=closed) surfaces in [R* are orientable). Note that a smooth
Gauss map is uniquely defined upto sign; now f will denote such a map.
The tangent plane to S at N(P)=F* is L to N(P) and so Il to the tgt.
plane to S at P: thus the tangent space to S at P coincides with the
tangent space to S* at B, . Given P£ 5 let R(u,v) be a parametrisation
of a nhbd. of P and let f(¥(u,v))=N(u,v) ; then the linearization fp:
Tp-»Tp Of the Gauss map is given by ?1""3"'1' 1-‘;1—--[{ For each P& S the
Gaussian curvature Kp is defined to be -detfy and the mean curvature
ppto be -1/2 trace £p We will equip each tangent space Tp with the
first fundamental form I defined by I(V,%) = V.W V?,# ¢Tp. In terms
of this +ve definite symmetric bilinear form the linearization fp of

the Gauss map can be interpreted as a bilinear form to be called the

second fundamental form II: one has 1II(V, %) = (-fP?).'\?. It is important



to note that this form is also symmetric., This follows because -fp(fz).ﬁz
' -l-«l:.iﬁ = il.orj,‘ for 1,J=1,2.We now recall the standa»d way in which one can
'diagonalise! this symmetric bilinear form. Fo.r each P £ S5 we choose E:
to be a unit vectoreT, at which the continuous function 11(¥,%),
restricted to unit vectors Ve T, attains its maximum value k,; then
choose 'éi to be the unit vector J_é: such that ?‘x3= W(P) and put “®=
I1(&,% ). For any unit vector V = cos®& + sin®¥, one has Euler's formula
II(V,V) = Kcos'® +ksin'® : this follows by noting that II(v,v)= Kgcos® +
2I1(5,,% )cos® sin® + KEin'® could attain its maximum at 8=0 only if
the derivative w.r.t.® at 8=0 (i.e. 2II(&,,%)) vanishes. Euler's
‘formula shows that II(V,V)>«, for all unit vectors V; thus Kk 18 the
minimum value of II(?,¥) as V runs over unit vectors. Note that -1p(& )=
Ka® and -£5(8 )= k& . (Proof. Let -f,(F) = x&+ y&; take dot pr;ducta
with respect to 'e: and 'e" to get ¢,= x and 0 = y } etc.). Hence Gaussian
* (fesp. mean) curvature equals ke (resp. 1/2(k.+&)).(One should note
that the sign of p depends on the "orientation"-i.e., the choice of the
smooth Gauss map- with w.hich S has been equipped; K is independent of
orientation).

$5.Theorema Egregium. The fundamental coefficients, with respect
to a local parametrisation R(u*,u?), are Bap = (T, g) and _Q = TI(T, F)'
(Here and in the following each Greek suffix will have the posaible
values 1,2; further we will use the "dummy suffix convention'": it will
be understood that a summation has been performed over each Greek suffix
which occurs more than once in any term). Alternatively we will sometimes
write u=u, W*=v and use the symbols E,F,G and L,M,N for the fundamental
coefficients gy,&,,,&,, and Q,.2,,Q,, respectively., Note that E>0, G>0
and det[g,]= EG-F*>0; the last follows by noting that |22 "= Rfilsine =
l?d'ﬁf(l—cos'a) =["x'i'ﬁi"_|1'- (1'1..:"1)‘: EG-F*, The entries of the inverse
matrix [g*]obey g"Pgh.=5;. The Christoffel symbols Tl'.,':, and T;n are
now defined by

-y

(1) Tup = I"P-«s -+ 'Q""FN
(-this makes sense hecauaeD.- II(E, ,r ) equals r _1?-) and ‘:"PY 3_‘5— PY‘
We can compute the matrix [b']of the linear map *rf'TP"'TP w.r,t, the
basis T ,% by taking dot product of 'i?‘z A I, with respect to 1;,, this
glves -.Q"= L:aw i.e. b" = —s".Q.,“ . The - 2 equations
n_’
(2) Ny = —-gM" .. 7
are called ﬂgmw they imply that K=det(- fP) = l-g"'l Lﬂuli.o.



' IN-M*
(3) K=t EG-F*
Differentiating (1) w.r.t. u¥ and using Weingarten's equations (2) we can
compute the triplo derivatives

, ; ¥ v d ¥
(4) = !‘{ .yt ra)ﬂ'; - 3”'..0.411';} e N{-n‘-q-r "'r:tp -D'“'}'
Now we make the ainple but crucial observation that ¥, = r;“F +This yields
P!

() (R,‘“i o T [ T:,,T' - N‘(_n“n_“ =S ),

the Theorema Egregium (..Celebrated Theorem) of Gaussj; and also the

di-Codazzi equation

1) f
(6) -—CL(F.';--Q"\'.. - r -n-tp dFD'XT-
We define Ruuyy = Ep R:" ; 80 (5) can also be written as
(s R-u.p\' - @ﬂpn‘rt“nﬂtnFl}'

This shows in particular that Rﬂ'_“ is skewsymmetric in the first'2 and the
last 2 indices and is unchanged if the first and third and second and last
indices are interchanged (jalternatively these symmetry conditions follow
directly from def. (5) and symmetry of T;:. in the lower indices). So (5)!
is essentially equivalent .to the following single equation

(5)r Ras = LN-M*

The geometrical significance of (5)'' stems from the fact that the LHS
can be computed from a knowledge of the coefficients g_,’ in a nhbd. of P.
To see this it suffices to show that the Christoffel symbols can be so
computed. To prove this note (from (1)) that E".’r.?" =3.‘;T'f' = T:.‘P H
next differentiate T,.Z = g, %.r.t. ub to get Y""‘P .g-T:‘,P: Fup.p} SUDLTaCt
this equation from the sum of the 2 similar ones obtained by permuting
“Lp,¥ cyclically; this will give

) 1(_;-‘\' - 'k"[%-«p-\' + Fpv. ""34\'-9} .

Combined with (3) the above remarks establish the remarkable fact that
the Gaussian curvature can be computed from the coefficients E"f" of the
first fundamental form only by a formula involving partial derivatives

of order <2, Surfaces S S'“s[k‘will be called jsometric surfaces if there
exists a 1-1 onto runction STy 5®, with ¢ and §* both smooth, such that

each linearization T,—'T’. (here P*= g(P)) preserves the first fundamental
forms. At corresponding points P,P™ of 2 isometri ces,_the Gaussian

curvatures Ke M”w;infact to prove KP = K?.it suffices that
some nhbd. of P in S be isometric to some nhbd. of P* in S™ under an

isometry ¢ carrying P to P*.To see this let ?(u,v) parametrize such a nhbd,;
then ?"(u,v):f(‘?(u.v)) is a parametrisation of a nhbd. of P* and one has
E(u,v)=E*u,v),F(u,v)=F*u,v) and G(u,v)=G™u,v).
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§6. Curves on a surface. By a curve on S we shall mean a curve T(t)
(-in the sense of §2-) which takes its values on the surface S C[; for

the portion of 3 parametrised by T(u,v) one will thus have 2(t) =
2(u(t),v(t)) where u(t) and v(t) are smooth functions o"t t. Using the

path connectedness of S it is an easy matter to establish that for any

2 points P,Q € S one can find a curve on S which passes through both P
and Q. We define the distance dg(P,Q) to be the infimum of the distances
from P to Q measured over all such curves; it is easy to verify the usual
triangle inequality. Any isometry ( §5) clearly (- ﬂ-‘-"(ki-l!: fl'i’-u.-u- vldt =
_WE +2Fuy + GV dt -) preserves this distance; the converse

proposition (-i.e, that any distance preserving map S ¥+5* 1s an ispmetry

in the sense of §5 -) seems much harder. By a yector field al ong: the
curve 'E(;) on S we mean that for each t we are given a tangent vector

W(t) e Ty, such that in any parametrisation F(u,v) one has W(t)=w, (t)
;I(u(t),V(t)) + ',_(t)z_‘:_ (u(t),v(t)) with the components w, (t), w, (t)
smooth functions of t. An important example is the yelocity vector field
i’(t) of the curve. Given a vector field W(t) along the curve P(t) its
covariant derivative -D"“ is also a vector field along ?(t) defined by
projecting ‘-‘l‘? o'rthogonally on each tangent space T_.‘,&). It is important
to note that the

gut entirely in terms of the first fundamental form; infact in terms of

the Christoffel symbols ( §5), which we know (-eqn. (7) of §5-) how to

compute in terms of the first fundamental form,(Proof. Differentate
V=W x; +w i" with respect to t to get W= w,_?+ w ?+ w'_ruu * wtruv +
w'.'i;u +-w‘ii’;v j take its dot product with respect to ¥, and E to get

the 2 eqns. aE + bF = W E+ w,F + wl a+ wll ¥+ wll d+ wT, v,

aF + bG = etc, for a and b where az':;+ bﬁ_:-.z_i.? , the tgt. component of ?)
—
The vector field W(t) is called a parallel vector field along F(t) if 2—“{-

is identically zero. Note (using ﬁ(ﬂ,;.‘).z(:,%» that such a vector

field always has constant length, Ofcourse a constant vector field along

F(t) need not be parallel; for such a vector field W(t) note that W(t)

and so 3 1s . to W(t): thus we can define a scalar [L] by
[-‘W](m 3®) . A curve T(t) on S is called a geodesic if the velocity

vector field ?(t) is parallel along r(t). It is clear that if T(t) is

a geodesic then all the reparametrised curves P(at) (-here a is a non-

zero constant-) are also geodesics and that no other reparametrisation of



i

T(t) is%a geodesic, Choosing a suitable a, \'.?(nt.)lsl } s0 we observe

that a curve Z(t) is a geodesic only if its reparametrisgtion by arc

 length #(s) 18 a geodesic., On the other hand (by using a f:foposition

proved above it follows that)if g 5-—» 5%is a local isometry (=i.e. an
isometry when restricted to any sufficiently small portion of 5-) then
for each geodesic T(s) on S one gets a geodesic s) = g(i-’(a)) on S‘;
this fact is useful for visualieing geodesics on some simple surfaces

e.g. the cylinder and the cone,

A aapJ.n.h . -ﬁalnf eurewdan cone ,
(@™ a-olud; haa 2 self lescecdions)

We continue with the policy ( §2) of defining invariants for
a curve B(t) by first switching to an arc-length parameter s and then
differentiating with respect to s (primes). For a curve on a surface S
we define the normal curvature k, to be P” N and the gegdesic curvature
kg to be [g';_‘.’} Note that F(s) is a geodesic 1ff Kz 0. In §7 we will
establish a remarkable connection between geodesic curvature and the
Gaussian curvature of S. The relation between normal curvature and
Gaussian curvature is much more transparent.Note first that for each
vector weTp one can find a curve F(t) on S such that ®(0) = P and
P(0) = w (: if in a local parametrisation P(u,v) P has parameter values
u,,v, and ¥ = w7, (u,,v,) + w&?‘(u,,v.) take R(t)= Flu,+ mt, %+ wt )).
One has Meusnier's theorem:if W is a unit vector in T then II(¥,¥)
equals the. normal curvature at P of any curve through P whose velocity
vector at P is proportional to W.(Choose a local parametrisation;
then ®(8) = R(u(s),v(s)) gives = Ru'+ ?l_v'+ 'i':{l{‘+ 2 ?u“"’* a’""
from which it follows that k.= P4N = Li‘+ 2Mu’ v+ Nz II(W,?) because
+wauw R+ v'Z ). We see thus that the principal curvatures &e and &



(see Et.) are the maximum and minimum values for the normal curvature
at P of a curve on § passing through P and that the Gaussian curvature
Kp is the product of these 2 values. This interpretation of Kp enables

us to have a rough idea of what the surface looks like near P.

Kp>0 Che ka iy have samue Kp= O amd i c“.h_ .
“‘) P'!\_ﬂ_r!h\" ar Kay ¥y have 0‘»‘”“’4"3“)
(t.e. exactCyons if

Ka,k, ta Zeso)

p fmm "

P catted an elliphie ot
C"')i_‘ht&;. as wamlie N
4 _—=)

- b
Pir called alhyperimlic,
?M.‘hu; p\nl’ r_’l"_r_

Pu callied a

An important way in which curves arise on surfaces 1s as integral
curves of vector fields., A vector field on S (or on a portion thereof)
assigns to each P a tangent vector W(P)e Tp in such a way that in each
local parametrisation ?(u,v) one has ?(u,v) = "(u,v)i‘:(u,v) + w._(u,v)
?,_(u,v) with the component functions w, (u,v) and wt(u,v) smooth. An
integral curve F(t) = r(u(t),v(t)) of this vector field is one for which
u(t),v(t) is a solution for the ODEs %, wy(u,v) s %‘iz = w, (wv) . Every
point of the surface has a nhbd, which admits an orthogonal parametrisation
T(u,v) i.e. one for which T, LT at all points. To prove this one starts
first with any ¥(¥,¥) parametrising a nhbd, of P so small that over it
one can fix 2 mutually .. vector fields 'ﬂ,?. By the theory of ODEs one

oo LA vl
has a'(smooth function u(%,¥) which is constant over the integral curves

of ?; and likewise a smooth function v({,¥) constant over the integral

curves of 4. One takes F(u,v) = R(TGL¥),7(,¥)) etc.

§?. Gauss-Bonnet Formulg.Given a surface Ss.ﬂf‘a.nd a region 1LE S
parametrised by T(u,v) we define the greg of [l to be _g- 1% € |dudy  JThe
LA b =9 g
parametrisation used is immaterial because I?ﬁ"'l%%l‘ [C-rbﬁ +ﬁ%-é)x

] Fu,
(2% +2%) = (72l PET| e s, w7 the hange of variabies
- - [T ENT ] ~ g™
formula, we see that If\%,.’i?.{(u,v)atuotv - fﬂ-al.‘x%[(u.v) “aﬁ‘.ﬂldu‘h

AT\ UL AT t ides with the usual notion
= [[I&x3T | 4647 .(That this definition coinc
of "area" can be seen by noting that a small parallelogram bounded by

two u=const. curves and two v=const, curves has approximately the area
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|2 %uxR5v]).We extend the definition of area to regions (LSS which
can be l;artitioned into a finite number of subregions of the above
kind by taking the sum of the areas of these smaller regions (31t is
easy to verify that the partition of {Lused won't matter). Still more
generally for any emooth function >R, f__(mqua will be defined
analogously by considering the integral ffsbi-;",.-i-n.(q.[v (3;which can be
seen, by a calculation similar to the one above, to be independent of
the parametriaation used). As a first step towards calculating ‘ﬁ Kd A
we prove the following lemma., If W(t), E(L)M&_y_&ﬂﬂ‘_ﬂﬁm
along a curve on S with angle from V(t)_to W(t)_being ¢(t), then
(1) . ['-3_‘:‘_3 [Ib(? al‘-l’
(; angles in T, are measured compatibly with the orientation of S). To
prove this denote Wx¥ (resp. Nx¥) by ?J.(rasja. V,) and note th;t :
[3?] = Wi, = (eosyp V4 s VY, (K% (eosr ¥ + 8 @ ¥V, Y= (—u?‘i{ v+
mq?’+w=f‘?~_'va+&q ). (cndq»u‘_—h-fv)— sm:fgl_i +

cotte v "_1. + cos'y 4L af = 4““"‘?“ Y/ which eguals RHS because ?.*7;: 0
yields -¥.%/= V'.v, ’E{TJ' As a corollary it follows that if in an
orthogonal p etrisation a curve F(u(g),x(s)) makes an angle ¢(s)
with 7 (u(g),x(s)), then
(2) CICES (G\.v -Bu) +4.

(Apply last 1emma to the unit vector rialds 2! and Q/E noting that

P@)a] = (@) @) = (@ @)@

"';;-"k,ur -+ 4’., el ot F because i:.f‘:' a 03 further 'P .r =0
= ey 2.5 L= A tc.). On the oth
also shows q:;l_':‘__ =T =— ;_("'1' 1,7 -+ €, etc.). On the other

hand we note that in an orthogonal parametrisation the Gaussian curvature
is given by '
. \ Ey G
(3) Ke=--= (= +——))
2& EG /2 (\[ai 4
(Proof: Take dot product of (1),35 with 'i"’. ,I, to compute the Christoffel
symbols: T';,_—--LQEJ. \'"z" = -L E—.., I";: - .LEL .\...,:. ot L:. %‘.,
PR ‘G" P ; substitute these values in K = ‘?\m s ERg
E
1 1_ |.-.l
(kT TUTRT RO o SR, «-(L%—)c
G 3 C"u G

FeShe 404 B, CERIED-G20G 8) - -2 (8 L C
i e. HHS of (3)).A 2=simplex & = aiala = s 15 the imase 3 at trian
region A = a,a a lying in the domain of some local parametrisation

K
o

~

eﬁl"‘r'-'

T(u,v) ; 4,%,, 8,8, and 2,3, are sald to be its 3 "sides" or "faces"
or incident l-simplices (: they constitute the 'boundary’ 98 of A );
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and E‘,'E‘,_,_-G', are 1ts 3 vertices or incident Q-simpliceg. We have the

' Gauss-Bonnet formulg

() . ngKM = 2"“(9""'#&*'(5‘1)" S'a'at'l[‘)d"

A priori the line integral and the R; in the RHS of (4) are defined
in terms of a smooth unit normal vector -N’ on the 2-simplex K t the
line integral is done w.r.t. the compatible cyclic orientation of 94
and ' 8, the angle through which the tangent to QA turns at the vertex
3’1, is measured compatibly. Note however that the value of each temrm
in (4) is independent of the choice of g (te.g. if N is replaced by -N
tgt. vector T to 98 is also replaced by -% and so ﬁx? and thus r}(s)
is unaltered).

7~ -—— ") /-"s___,“"\\.‘. e s =
/ g e / - 7
- ; ! %
o - !
! — -“'_ -~ '\. -;, "- - e - . ‘
;/ . C Ny < I
s 7 \
A 2-simplex ana i ' 4
— ek
AN === bttt
) “

Eules charadoiatic r_g_ﬂ.i‘ o

A closged cu...?u..u Eriamputated
usth o LW . Bulu chhonndoithe a L)
4l A clrsed tiavpdated Sufac
- Wb 122 - $liens ; Euber clionade
Lahe ia zero, (Ore 2 - Bmaphe slnew
Ahd-d).

a

= —_—= 2
N N

" We will see later that while proving (4) there is no loss of.
generality in assuming that the above parametrisation '?(u,v) can be
chosen to-be orthogonal; the smooth unit normal 3!’ on .ﬁ. shall be in
the direction of E.’lnﬁ.i‘irst we use (2) to note that -I;Ekﬁds =

(Pdu + Qdv) + ‘g__q’da where P= — .El. and Q= <] « Next we
A

note that ‘gif’.t_-. is the angle through which the tangent turns as one



12 !

describes the 3 sides of ‘33; B0 it is intuitively clear (-but not
‘altogether trivial to p_rovs-) that it should equal 2% - (Re+0.+B ). On
the other hand by Green's theorem _gi?dai-ﬂdv) equals I_[}?%_%ﬁ)dml.
i.e, -i&m by using (3). We will now proceed to the computation of ﬁim
over rag_:l.ona more complicated than a "triangle", A region Lot S is
said to be trianculable if it is a finite union of some 2-simplices
Iwhich are elther pairwise disjoint or else intersect in a common edge or
vertex: these 2-simplices, together with their sides and vertices,
consetitute a mmm ofﬁ..rts boundary ’aﬂ.is made up of those
l-simplices which are incident to precisely one 2-simplex of the triangul-
ation. We note that QEL is empty only if S is compact (="cloged") and
N= S. It 1s known that all closed surfaces are triangulabla.To compute °
_[(_Jeh\ for a ¢tlosed surface we select eome triangulation of S; let us
suppose that this triangulation has « vertices, -(,_edgea and -gtrianglu.
For each of the «; 2-simplices & we hav: the equation (4); we add
these equations to obtain ffskth = lrrx‘—:i:.l(ﬁﬂ-r[lﬁ +R3). This follows
because each edge is incident to 2 triangles and it makes two opposite
contributions to the line integrals (: this is because either the chosen
surface normals on the 2 triangles are in same direction but tgt. vector
to ed.sa 1s reversed or else the tgt, vector to edge i8 same vis-d-vis
the 2 triangles but 'ﬁ'ia reversed; in either case ?x? and so sign of
Ki(s) is reversed in the 2 contributions). We now subetibdifveach external
angle iﬁhnt;thc corresponding internal angle Y =m-B and see that the
sum of all the angles Y 18 3mr., ( “'the sum of all the angles at a vertex
is 27 ). So &MA = 2wy =374 + 2M<4 -, Now we note that each
triangle has 3 sides and each side is incident to 2 triangles to get 3.&;2.(..

Hence uﬂmuasu_m_mm;mx.m. « sldes amd

(5) _['_(;KAA = 2 (o= oy + <2).

In particular this remarkable formula shows that irrespective of what
triangulation is chosen the number oy =od) ¢ o3 is the same. This is
infact true for all triangulable regions L) (and not very hard to prove
directly): « - «, f.-c, is called the Euler characteristic and is denoted
b %) . It is at once clear that 2 diffeomorphic surfaces S, S* (-i.e.

those for which there exists a 1-1 onto smooth map SEas* with '?1 also
smooth-) have same Euler characteristic. Thus (5) shows thatig_&ng
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diffeomorphiem invariant of the closed surface S.There is no difficulty
in generalia‘ln; the calculation to triangulable regions ..ﬁ.-ith QS}.# 0.
Let us triangulate LL with «vertices, «, edges and «, triangles and let
us suppose «, of these vertices and « of these edges lie on Q5L . We
now proceed as above writing eqn. (4) for each triangle and adding the
ensuing b equations. This time the line integrals S;n don't cancel.
Furthermore at vertices % on QfL sum of all the internal angles

ie not 2n but less: say Qk-ej . Furthermore now instead of 3y, =2« One
has 3;(1_52.4‘-.*,' . Thus we see that for any_triangulated region £l of a
surface 5 QR ! _( i

6) _(_[n!_(dl\ = AN + ey — ?;.91‘ = M“La e

It is worthwhile to note that we have proved (6) without assuming that 0
is orientable: we equipped each 2-simpex with a normal but these nommals
need not match. Formula (4) is a special case of (6): now ..q": 3 and ;=
Tpy . Formula (6) also tells us why there was no loss of generality
when we assumed (while proving (4)) that T(u,v) is an orthogonal para-
metrisation: we can always cut up our 2-simplex into such small triangles
that each one of them (-see p.9-) can be covered by an orthogonal
_parametrisation; then (6) aﬁpliod to this triangulation can be easily
seen to be nothing but (4). Note, from (4), that Af each side of the
triangle 95 is a geodesic then

%) ffﬁma =4 (X )

hereY= 7-R: are the internal angles of XK. Thus Gauss-Bonnet theorem
clarifies the geometrical significance of Theorema Egregium by showing

how the Gaussian curvature can be measwed from the sum of the angles

of a small geodesic triangle: K(P) = ‘_-!l-u CT‘_*M -
AP Avea(R)

PENT O .



